• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Origins, distribution, and ecological significance of marine microbial copper ligands

Nixon, Richard L. 31 August 2020 (has links)
Copper (Cu) is required by marine microbes for essential biological processes, including photosynthesis and nitrogen fixation, but can be toxic above a certain threshold. Copper bioavailability in seawater is regulated by complexation with dissolved organic ligands of unknown source and structure. Culturing experiments have demonstrated the production of high-affinity Cu-binding ligands by marine algae in response to metal stress or limitation, suggesting they function either as metal ‘sponges’ to reduce copper toxicity or ‘carriers’ that promote uptake. The goal of my thesis research was to develop methods for the recovery and characterization of Cu ligands from seawater that could then be applied to natural samples to investigate sources and structures of recovered ligands. Using natural seawater spiked with model Cu ligands, I developed an immobilized Cu(II)-ion affinity chromatography (Cu(II)-IMAC) protocol which was shown to be effective in quantifying an operationally defined subset of natural Cu ligands. I then applied Cu(II)-IMAC to seawater collected along transects in the Canadian Arctic and NE Pacific Ocean to assess the abundance of this ligand pool across a diverse set of samples. Ligand distribution profiles and their covariance with other components of seawater (e.g. chlorophyll) were consistent with in situ biological production of some Cu-binding ligands. Model ligands spiked into seawater and recovered by Cu(II)-IMAC were also used to develop protocols for structural characterization of Cu ligands by solid-phase extraction (SPE) and tandem mass spectrometry (MS/MS). This research provides new tools for the isolation and characterization of copper ligands in natural samples, and new insights into the biogeochemical cycling and ecological significance of Cu in the ocean. / Graduate
2

Particulate Organic Carbon Flux in the Subpolar North Atlantic as Informed by Bio-Optical Data from the Ocean Observatories Initiative:

Cuevas, Jose M. January 2024 (has links)
Thesis advisor: Hilary I. Palevsky / The biological carbon pump in the North Atlantic Ocean is powered by the annual spring phytoplankton bloom. These primary producers use inorganic carbon in the surface oceans and convert it into organic carbon, a fraction of which is exported out of the surface mixed layer and sequestered at depth. Determining the rate of carbon flux below the maximum winter mixed layer depth, driving sequestration on annual or longer timescales, is critical to understanding the North Atlantic carbon cycle.To constrain daily-to-annual scale changes in carbon export in the subpolar North Atlantic, I analyzed seven years of daily optical backscatter depth profiles (200-2600 m) collected from the subsurface profiler mooring at the Ocean Observatories Initiative (OOI)’s Global Irminger Sea Array from September 2014 to May 2021. This is the longest-running time series of daily, year-round optical backscatter profiles that has been collected in this region, providing novel opportunities to assess seasonal and interannual variations in particulate organic carbon (POC) flux to depth. This analysis, focused on large particles and aggregates identified from optical backscatter spikes, shows annual pulses of sinking particles initiating in May to June during each year of our seven-year time series, consistent with these export pulses being driven by organic matter production during the spring phytoplankton bloom. These pulses of particles sink through the water column at rates ranging from 10 and 30 meters per day, and though particle concentration attenuates through the water column due to remineralization, coherent large particle pulses generally extend deeper than 1500 m, the deepest maximum annual mixed layer depth over this period. Although deep winter mixing in this region requires sinking particles to penetrate much deeper than in other parts of the ocean to be sequestered long-term, pulses of large particles consistently penetrate to below even the deepest annual mixed layer depths in the region, highlighting the importance of these large particle pulses to carbon sequestration at depth in the subpolar North Atlantic. / Thesis (MS) — Boston College, 2024. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
3

Elemental Stoichometry in Nutrient Pools in Oligotrophic Marine Ecosystems

Lucea Sureda, Anna 23 January 2004 (has links)
Amb aquest treball es preté comprovar la universalitat de la relació estequiomètrica de Redfield i recercar patrons consistents de les desviacions d'aquesta raó promig en ambients oligotrofics. Per tal de dur a terme aquest propòsit s'han desenvolupat relacions estequiomètriques en el compartiment particulat i dissolt orgànic i inorgànic per el C, N, P i Si.La estequiometria dels nutrients a l'oceà s'ha examinat al Mar Mediterrani i a l'Oceà Atlàntic subtropical, mentre que la zona costenera del Mar Mediterrani ha servit per estudiar aquestes relacions sota l'influència d'aports terrestres. En el segon capítol de la tesi es descriuen patrons meridionals del fluxe de nitrogen i fósfor vers la capa biogènica de l'Oceà Atlàntic Central. La raó promig entre el fluxe difusiu del nitrogen inorgànic dissolt (DIN) i del fósfor (DIP) es mostra similar a la raó de Redfield al llarg de l'Oceà Atlàntic Central, però tendeix a valors per sota dels establerts per Redfield a la part sud del trajecte i superiors a la raó de Redfield al centre del gir sudtropical. La raó N:P del fluxe difusiu i la raó N:P dels nutrients dissolts inorgànics en la capa biogènica es troben fortament correlacionats, mentre que no existeix cap correlació amb els valors de la raó N:P de les aigües intermitges. Els resultats trobats en aquest capítol de la tesi indiquen que la recirculació vertical de nutrients a la capa biogènica de l'oceà Atlàntic Central és capaç d'operar amb raons estequimètriques que difereixen de Redfield i per tant els components biogènics i biolítics s'adapten a les variacions locals de la raó de Redfield. La hipòtesis que existeixen raons estequiomètriques previsibles en la reserva oceànica de material dissolt orgànic que es troben en equilibri amb la reserva del material particulat orgànic i dissolt inorgànic, es corrobora en el tercer capítol d'aquesta tesi. La majoria del carboni orgànic present en aigües oligotrofiques del Mediterrani estratificat es troba en forma d'orgànic dissolt, mentre que el POC (carboni orgànic particulat) representa un percentatge menor. El nitrogen i fósfor orgànic dissolt que comprenen el 50-80% del "pool" total de P i N a la capa biogènica, decreix en percentarge a la capa biolítica. S'ha comprovat una distribució uniforme del nitrogen disolt total (TDN). L'increment en el percentatge de N inorgànic disolt i el decreixement en percentatge de N orgànic dissolt amb la fondària, és un indicador clar de l'equilibri dinàmic que existeix entre les reaccions bioquímiques entre les reserves oceàniques. Mitjançant un sistema de balanços, s'estableix un intercanvi de nutrients (exportació-importació) entre els pools dissolt orgànic i dissolt inorgànic en el sistema. S'ha comprovat que el fluxe de nitrogen orgànic dissolt (DON) excedeix al fluxe difusiu de nitrogen inorgànic i per tant els aports atmosfèrics i terrestres són importants en aquesta regió.En el quart capítol de la tesi es descriu el lligam existent entre el component pelàgic i els component del bentos d'una àrea litoral del Mar Mediterrani, és a dir un compartiment anabolic que produeix matèria orgànica i un de catabolic que actúa com agent oxidant de la reserva de matèria orgànica del sistema. El compartiment pelàgic es mostra heterotrofic. Al mateix temps, existeix una contribució important de material terrestre als sediments. Per contra, el compartiment bentònic és autotrofic on el dèficit en la producció grossa es compensa amb l'excés de producció neta del sistema. Mitjançant la quantificació simultànea dels fluxes anuals de sedimentació per al C, N, P i Si així com dels fluxes sediment-aigua de les espècies orgàniques i inorgàniques dissoltes, s'ha establert un sistema de balanços de matèria del sistema. El compartiment bentonic es configura com a sumider o exportador de matèria orgànica, degut als aports terrestres de carboni en el sistema.Els patrons de distribució de nutrients derivats dels resultats dels capítols anteriors es comproven mitjançant un experiment d'addició de nutrients. En el capítol cinquè d'aquesta tesi s'estudien els canvis en la distribució de nutrients en les diferents reserves nutricionals d'un sistema quan es troba sotmès a aports controlats de nutrients. S'ha comprovat que, mentre el tamany relatiu de la reserva de nutrients inorgànics dissolts no varia amb l'increment de nutrients en el medi. Hi ha una tendència a l'increment del tamany relatiu de la reserva del material particulat, paral.lela a un decreixement simultani de la reserva de material dissolt orgànic. Aquest experiment contribueix a verificar el paper del DOM (matèria dissolta orgànica) com a principal reserva nutricional en sistemes oliogotròfics. / The stoichiometric ratios are powerful tools to model basic biogeochemical patterns of the sea when the fluxes of a single element are known. It is, therefore essential to understand the full implications of variable stoichiometries to predict the effect of the living components of the ocean on biogeochemical processes. Here, the stoichiometry between C, N, P and Si in different chemical pools (particulate and dissolved organic and dissolved inorganic matter) were examined in contrasting oceanic and littoral ecosystems, and the changes in nutrient partitioning in response to nutrient inputs was tested through experimental research. In the Central Atlantic Ocean, the average ratio between dissolved inorganic nitrogen and phosphorus in the estimated vertical diffusive fluxes was similar to the Redfield ratio, but tended to be above the Redfield ratio at the center of the South subtropical gyre. The N:P supply ratio and the N:P ratio of dissolved inorganic nutrients in the biogenic layer were strongly correlated, but were not positively correlated to that in the intermediate waters. The vertical nutrient conveyor belt of nutrients in the upper waters operates relatively independently of the underlying waters in the Central Atlantic, so that both the biogenic and the biolythic components should be able to adapt to local variation about the Redfield ratio.In the stratified NW Mediterranean Sea, the stoichiometry between dissolved inorganic, organic and particulate organic matter pools indicated an excess nitrogen relative to phosphorus, particularly in the biolythic layer, as well as a general silicate deficiency relative to both N and P. Most (> 80 %) of the organic carbon was present as dissolved organic carbon, with POC representing a minor percent of total organic C throughout the water column. The increasing C/N ratio of DOM with depth indicates that N is recycled faster than C in the DOM. There exists a dynamic equilibrium between the biological transformations between these pools with depth, with a dominance of DON production in surface waters and remineralization in the underlying layers, from which dissolved inorganic nitrogen is re-supplied to the biogenic layer. Alocthonous N inputs must be important in the region since the downward DON flux exceeded the diffusive DIN supply. The coupling between anabolic and catabolic compartments of a littoral area in the NW Mediterranean Sea are characterized. The pelagic compartment was heterotrophic, supported by significant allochthonous inputs of land material, whereas the benthic compartment was autotrophic, with the excess net benthic community production balancing the deficit in pelagic community production, leading to a system in metabolic equilibrium. Sedimentary inputs of phosphorus and silicon were compensated by sediment release of phosphate and silicate, whereas nitrogen was lost or accumulated in the sediment compartment. Carbon inputs to the benthic compartment also exceeded requirements, due to the allocthonous subsidies to the system, so that the benthic compartment stored or exported organic carbon.Experimental nutrient additions lead to a parabolic change in C/N and C/P ratios in the dissolved organic matter with increasing nutrient inputs. The relative size of the dissolved inorganic nutrient pools did not vary, but there was a tendency towards an increase in the relative size of the particulate pool at the expense of a decrease in the relative importance of DOM as a reservoir of N, P and C, with increasing nutrient inputs.The relative importance of different nitrogen pools was examined in relation to the total nutrient stoichiometry of the oligotrophic system. The ratio of dissolved inorganic nutrients reported in the research presented is indicative of a general deficiency in nitrogen compared to the global ratios reported in literature. The dissolved organic matter was highly depleted in P relative to N and C at all locations investigated and the resulting POC:PON ratio (11.7) of this study in the particulate pool deviates greatly from the literature values which approximates Redfield value (5.5-6). The shift of the dominance of DON towards PON at TOC/TN values higher than 20 on the oligothrophic areas of the study, gives evidence of increasing carbon export fluxes in a system dominated by particulate pool and points to the effect of the biota on the gradient-driven export to sinking carbon fluxes in the ocean.
4

Carbon Cycling in Canadian Coastal Waters: Process Studies of the Scotian Shelf and the Southeastern Beaufort Sea

Shadwick, Elizabeth Henderson 18 August 2010 (has links)
Much research has been devoted to understanding the ocean carbon cycle because of its prominent role in controlling global climate. Coastal oceans remain a source of uncertainty in global ocean carbon budgets due to their individual characteristics and their high spatial and temporal variability. Recent attempts to establish general patterns suggest that temperate and high-latitude coastal oceans act as sinks for atmospheric carbon dioxide (CO2). In this thesis, carbon cycling in two Canadian coastal ocean regions is investigated, and the uptake of atmospheric CO2 is quantified. A combination of ship-board measurements and highly temporally resolved data from an autonomous mooring was used to quantify the seasonal to multi-annual variability in the inorganic carbon system in the Scotian Shelf region of the northwestern Atlantic for the first time. The Scotian Shelf, unlike other shelf seas at similar latitude, acts as a source of CO2 to the atmosphere, with fluxes varying over two orders of magnitude in space and time between 1999 and 2008. The first observations of the inorganic carbon system in the Amundsen Gulf region of the southern Beaufort Sea, covering the full annual cycle, are also presented. Air-sea CO2 fluxes are computed and a carbon budget is balanced. The Amundsen Gulf system acts as a moderate sink for atmospheric CO2; seasonal ice-cover limits winter CO2 uptake despite the continued undersaturation of the surface waters. Biological production precedes the ice break-up, and the growth of under-ice algae constitutes nearly 40% of the annual net community production. The Scotian Shelf may be described as an estuarine system with an outflow of surface water, and intrusion of carbon-rich subsurface water by a combination of wind-driven mixing, upwelling and convection, which fuels the CO2 release to the atmosphere. In contrast, Amundsen Gulf may be described as an anti-estuarine, or downwelling, system, with an inflow of surface waters and an outflow of subsurface waters. Wind-driven and convective mixing are inhibited by ice-cover and restrict the intrusion of carbon- and nutrient-rich waters from below, maintaining the CO2 uptake by the surface waters. / PhD Thesis
5

Climate change impacts on the ocean’s biological carbon pump in a CMIP6 Earth System Model:

Walker, Stevie January 2021 (has links)
Thesis advisor: Hilary Palevsky / The ocean plays a key role in global carbon cycling, taking up CO2 from the atmosphere. A fraction of this CO2 is converted into organic carbon through primary production in the surface ocean and sequestered in the deep ocean through a process known as the biological pump. The ability of the biological pump to sequester carbon away from the atmosphere is influenced by the interaction between the annual cycle of ocean mixed layer depth (MLD), primary production, and ecosystem processes that influence export efficiency. Gravitational sinking of particulate organic carbon (POC) is the largest component of the biological pump and the aspect that is best represented in Earth System Models (ESMs). I use ESM data from CESM2, an ESM participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), to investigate how a high-emissions climate change scenario will impact POC flux globally and regionally over the 21st century. The model simulates a 4.4% decrease in global POC flux at the 100 m depth horizon, from 7.12 Pg C/yr in the short-term (2014-2034) to 6.81 Pg C/yr in the long-term (2079-2099), indicating that the biological pump will become less efficient overall at sequestering carbon. However, the extent of change varies across the globe, including the largest POC flux declines in the North Atlantic, where the maximum annual MLD is projected to shoal immensely. In the future, a multi-model comparison across ESMs will allow for further analysis on the variability of these changes to the biological pump. / Thesis (BS) — Boston College, 2021. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Departmental Honors. / Discipline: Earth and Environmental Science.
6

The seasonal cycling and physico-chemical speciation of iron on the Celtic and Hebridean shelf seas

Birchill, Antony James January 2017 (has links)
Shelf seas represent an important source of iron (Fe) to the open ocean. Additionally, shelf seas are highly productive environments which contribute to atmospheric carbon dioxide drawdown and support large fisheries. The work presented in this thesis describes the seasonal cycle of Fe in the Celtic and Hebridean Shelf Seas, and determines the physico-chemical speciation of Fe supplied from oxic margins. The results from repeated field surveys of the central Celtic Sea showed a nutrient type seasonal cycling of dissolved Fe (< 0.2 µm; dFe), which is surprising in a particle rich shelf system, suggesting a balance of scavenging and remineralisation processes. Coincident drawdown of dFe and nitrate (NO3-) was observed during the phytoplankton spring bloom. During the bloom, preferential drawdown of soluble Fe (< 0.02 µm; sFe) over colloidal Fe (0.02-0.2 µm; cFe) indicated greater bioavailability of the soluble fraction. Throughout summer stratification, it is known that NO3- is drawn down to < 0.02 µM in surface waters. This study revealed that both dFe and labile particulate Fe (LpFe) were also seasonally drawn down to < 0.2 nM. Consequently, it is hypothesised that the availability of Fe seasonally co-limits primary production in this region. At depth both dFe and NO3- concentrations increased from spring to autumn, indicating that remineralisation is an important process governing the seasonal cycling of dFe in the central Celtic Sea. In spring, summer and autumn, distinctive intermediate nepheloid layers (INL) were observed emanating from the Celtic Sea shelf slope. The INLs were associated with elevated concentrations of dFe (up to 3.25 ± 0.16 nM) and particulate Fe (up to 315 ± 1.8 nM) indicating that they are a persistent conduit for the supply of Fe to the open ocean. Typically > 15% of particulate Fe was labile and 60-90% of dFe was in the colloidal fraction. Despite being < 50 km from the 200 m isobath, the concentration of dFe was < 0.1 nM in surface waters at several stations. Broadly, the concentration of nutrients in surface waters described an oligotrophic environment where co-limitation between multiple nutrients, including Fe, appears likely. Over the Hebridean shelf break, residual surface NO3- concentrations (5.27 ± 0.79 µM) and very low concentrations of dFe (0.09 ± 0.04 nM) were observed during autumn, implying seasonal Fe limitation. The dFe:NO3- ratio observed is attributed to sub-optimal vertical supply of Fe relative to NO3- from sub-surface waters. In contrast to the shelf break, surface water in coastal regions contained elevated dFe concentrations (1.73 ± 1.16 nM) alongside low NO3-. Seasonal Fe limitation is known to occur in the Irminger and Iceland Basins; therefore, the Hebridean shelf break likely represents the eastern extent of sub-Arctic Atlantic seasonal Fe limitation, thus indicating that the associated weakening of the biological carbon pump exists over a wider region of the sub-Arctic Atlantic than previously recognised. These key findings demonstrate that the availability of Fe to phytoplankton may seasonally reach limiting levels in temperate shelf waters and that oxic margins persistently supply Fe dominated by colloidal and particulate fractions to the ocean.

Page generated in 0.0938 seconds