• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Field measurements and back-analysis of marine clay geotechnical characteristics under reclamation fills

Arulrajah, Atputharajah January 2005 (has links)
Due to the scarcity of land at coastal regions around the world, land reclamation is commonly carried out for the future expansion of various infrastructure facilities. Marine clay is present at the coastal regions of Southeast Asia. Land reclamation on this highly compressible soil foundation often requires the use of soil improvement works to eliminate significant future settlements from occurring. The combination of prefabricated vertical drains with preloading is one of the most widely used ground improvement methods in land reclamation projects. The best means available for field measurement and back-analysis of the marine clay geotechnical characteristics under reclamation fills is by carrying out extensive field instrumentation and in-situ tests. In-situ testing of marine clay was carried out at a test site. In-situ penetration testing was used to analyse the degree of consolidation, the improved shear strengths, overconsolidation ratio and the effective stress of marine clay prior to reclamation as well as after surcharge loading. In-situ dissipation testing was used to determine the coefficient of consolidation due to horizontal flow and horizontal hydraulic conductivity of the marine clay prior to reclamation as well as after surcharge loading. The in-situ penetration and dissipation tests were carried out by means of the field vane shear, piezocone, dilatometer, self-boring pressuremeter and BAT permeameter. Field instrumentation methods, assessment and hack-analysis of marine clay behaviour under reclamation fills forms the crux of this research. / The factors that affect the field instrumentation assessment of marine clays treated with prefabricated vertical drains, forms an integral part of this research study. Settlement gauges and piezometers were used to monitor the performance of the vertical drains and to assess the degree of consolidation of the improved soil at two case study sites. The field settlement data were back-analysed by the Asaoka and Hyperbolic methods to predict the ultimate settlement of the reclaimed land under the surcharge fill. Back-analysis of the field settlement and piezometer monitoring data also enabled the coefficient of consolidation due to horizontal flow to be closely estimated. Finite element modeling of marine clay and prefabricated vertical drains was carried out and compared with the field surface settlement results at the two case study sites.
2

Characterization of Gulf of Mexico Clay Using Automated Triaxial Testing

Murali, Madhuri 2011 December 1900 (has links)
With increasing development in the oil and gas industry, exploration and production is continuously moving deeper off the continental shelf and onto the continental slopes. This increases the risk of submarine slope failures leading to damage of offshore structures. Thus there is a need to study and understand properties of offshore marine clays on slopes. This study was undertaken in order to understand better the characteristics of a sub-marine clay deposit taken from the Gulf of Mexico. This thesis presents the results of SHANSEP triaxial testing performed on undisturbed samples of Gulf of Mexico clay. Background information is given about the clay, the sampling program and the laboratory testing program. The GEOTAC Truepath automated stress path triaxial apparatus implemented for this research and the laboratory procedures used are described in detail. Data is summarized from the various types of tests run on the clay (CKoU compression and extension, CIU compression and extension tests, consolidations tests) and the stress history of the deposit is evaluated. The SHANSEP reconsolidation technique was used for a comprehensive program of Koconsolidated-undrained (CKoU) triaxial compression and extension tests at overconsolidation ratios (OCR) ranging from one to eight. Eighteen tests were run on jumbo piston core samples from one particular core. The consolidation phase of these SHANSEP tests provided most of the preconsolidation pressure values used to establish the stress history at the two test sites. These tests were used to estimate the in situ Ko and how it varies with OCR. The undrained shear phase of the tests provides detailed information on the values of S and m for use in the SHANSEP undrained strength equation, Su= 0vo = S(OCR)m, effective stress failure envelopes, etc.
3

Testing of the Thermo-Hydro-Mechanical-Chemical (THMC) Behavior of Lime-Treated Subgrade Marine Clays Subjected to Environmental Stresses

Tunono, Chanda 21 December 2022 (has links)
Construction of pavements requires the subgrades - which are the foundation of the structure, to be capable of supporting traffic loads that would be applied onto them. In the case that the subgrades are unable to support the structure, failure would occur. The subgrade being in-situ soil can be of poor quality if not properly constructed or improved if necessary. In Canada, the eastern region precisely Ontario and Quebec, is dominated by sensitive marine clays which when disturbed lose their strength drastically making them a geotechnical hazard. The soil's high sensitivity causes this behavior it poses. Therefore, to construct pavements in this type of soil, improvement techniques are required. One such is lime stabilization which improves the engineering properties of the soil. Research on the stabilization of sensitive marine clay in Canada has been conducted to a certain extent showing the effectiveness of the process in improving the soil's poor engineering properties. However, during the process of stabilization, the thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes and interactions that occur influence the behavior of the stabilized clay. Environmental stresses such as moisture and temperature are also known to affect the coupled processes that occur. However, these coupled processes and their impact on the stabilized clay are not well known and understood. The goal of the research was to therefore, conduct various column experiments and monitoring to determine the evolution of the coupled THMC processes under normal curing and when daily thermal cycles were applied to the treated and untreated clay. Various columns were prepared in the laboratory to accommodate the compacted treated and untreated sensitive marine clay for monitoring over 28 days. In addition, columns from which samples for extensive geotechnical testing were collected, were prepared. The soils' strength and hydraulic conductivity were determined through testing while the suction, electrical conductivity and temperature evolution were determined by use of sensors placed within the columns. The developed mechanical properties of the soil were significantly improved by use of lime. This development of mechanical properties was further enhanced when the daily thermal cycles were applied to the soil due to increased curing temperature stimulated. In addition, to temperature and chemical reactions, it was observed that the hydraulic properties also contributed to the developed soil strength. The strongly coupled THMC processes were thus, observed during the treatment of the clay with lime. The results obtained will therefore, contribute to a better understanding of the coupled THMC processes that occur when sensitive marine clay is treated with lime. It will further contribute to cost effectively designing pavements in regions with sensitive marine clays or similar.
4

Engineering Characteristics of Sensitive Marine Clays - Examples of Clays in Eastern Canada

Nader, Athir 28 February 2014 (has links)
Sensitive marine clay in Ottawa is a challenging soil for geotechnical engineers. This type of clay behaves differently than other soils in Canada or other parts of the world. They also have different engineering characteristic values in comparison to other clays. Cone penetration testing in sensitive marine clays is also different from that carried out in other soils. The misestimation of engineering characteristics from cone penetration testing can result. Temperature effects have been suspected as the reason for negative readings and erroneous estimations of engineering characteristics from cone penetration testing. Furthermore, the applicability of correlations between cone penetration test (CPT) results and engineering characteristics is ambiguous. Moreover, it is important that geotechnical engineers who need to work with these clays have background information on their engineering characteristics. This thesis provides comprehensive information on the engineering characteristics and behaviour of sensitive marine clays in Ottawa. This information will give key information to geotechnical engineers who are working with these clays on their behaviour. For the purpose of this research, fifteen sites in the Ottawa area are taken into consideration. These sites included alternative technical data from cone and standard penetration tests, undisturbed samples, field vanes, and shear wave velocity measurements. Laboratory testing carried out for these sites has resulted in acquiring engineering parameters of the marine clay, such as preconsolidation pressure, overconsolidation ratio, compression and recompression indexes, secondary compression index, coefficient of consolidation, hydraulic conductivity, clay fraction, porewater chemistry, specific gravity, plasticity, moisture content, unit weight, void ratio, and porosity. This thesis also discusses other characteristics of sensitive marine clays in Ottawa, such as their activity, sensitivity, structure, interface shear behaviour, and origin and sedimentation. Furthermore, for the purpose of increasing local experience with the use of cone and ball penetrometers in sensitive marine clays in Ottawa, three types of penetrometer tips are used in the Canadian Geotechnical Research Site No. 1 located in south-west Ottawa: 36 mm cone tip, and 40 mm and 113 mm ball tips. The differences in their response in sensitive marine clays will be discussed. The temperature effects on the penetrometer equipment are also studied. The differences in the effect of temperature on these tips are discussed. Correlations between the penetrometer results and engineering characteristics of Ottawa's clays are verified. The applicability of correlations between the testing results and engineering characteristics of sensitive marine clays in Ottawa is also presented in this thesis. Two correlations from the Canadian Foundation Engineering Manual are examined. One of these correlations is between the N60 values from standard penetration testing and undrained shear strength. The other correlation is between the shear wave velocity measurement and site class. Temperature corrections are suggested and discussed for penetrometer equipment according to laboratory calibrations. The significance of the effects due to radical temperature changes in Canada and Ottawa is discussed. Some of the main findings from this research are as follows. • The Canadian Foundation Engineering Manual presents a correlation between standard penetration tests (SPTs) and the undrained shear strength of soils. This relationship may not be applicable to sensitive marine clays in Ottawa. • Another correlation between the site class, shear wave velocity, and undrained shear strength is presented by this same manual which may not be applicable to sensitive marine clays in Ottawa. • The rotation rate for field vane testing as recommended by ASTM D2573 is slow for sensitive marine clays in Ottawa. • Correction factors applied to undrained shear strength from laboratory vane tests may not result in comparable values with the undrained shear strength obtained by using field vane tests. • Loading schemes in consolidation or oedometer testing may affect the quality of the targeted results. • Temperature corrections should be applied to penetrometer recordings to compensate for the drift in the results of these recordings due to temperature changes. • The secondary compression index to compression index ratio presented in the literature may not be the value obtained from this research.
5

Engineering Characteristics of Sensitive Marine Clays - Examples of Clays in Eastern Canada

Nader, Athir January 2014 (has links)
Sensitive marine clay in Ottawa is a challenging soil for geotechnical engineers. This type of clay behaves differently than other soils in Canada or other parts of the world. They also have different engineering characteristic values in comparison to other clays. Cone penetration testing in sensitive marine clays is also different from that carried out in other soils. The misestimation of engineering characteristics from cone penetration testing can result. Temperature effects have been suspected as the reason for negative readings and erroneous estimations of engineering characteristics from cone penetration testing. Furthermore, the applicability of correlations between cone penetration test (CPT) results and engineering characteristics is ambiguous. Moreover, it is important that geotechnical engineers who need to work with these clays have background information on their engineering characteristics. This thesis provides comprehensive information on the engineering characteristics and behaviour of sensitive marine clays in Ottawa. This information will give key information to geotechnical engineers who are working with these clays on their behaviour. For the purpose of this research, fifteen sites in the Ottawa area are taken into consideration. These sites included alternative technical data from cone and standard penetration tests, undisturbed samples, field vanes, and shear wave velocity measurements. Laboratory testing carried out for these sites has resulted in acquiring engineering parameters of the marine clay, such as preconsolidation pressure, overconsolidation ratio, compression and recompression indexes, secondary compression index, coefficient of consolidation, hydraulic conductivity, clay fraction, porewater chemistry, specific gravity, plasticity, moisture content, unit weight, void ratio, and porosity. This thesis also discusses other characteristics of sensitive marine clays in Ottawa, such as their activity, sensitivity, structure, interface shear behaviour, and origin and sedimentation. Furthermore, for the purpose of increasing local experience with the use of cone and ball penetrometers in sensitive marine clays in Ottawa, three types of penetrometer tips are used in the Canadian Geotechnical Research Site No. 1 located in south-west Ottawa: 36 mm cone tip, and 40 mm and 113 mm ball tips. The differences in their response in sensitive marine clays will be discussed. The temperature effects on the penetrometer equipment are also studied. The differences in the effect of temperature on these tips are discussed. Correlations between the penetrometer results and engineering characteristics of Ottawa's clays are verified. The applicability of correlations between the testing results and engineering characteristics of sensitive marine clays in Ottawa is also presented in this thesis. Two correlations from the Canadian Foundation Engineering Manual are examined. One of these correlations is between the N60 values from standard penetration testing and undrained shear strength. The other correlation is between the shear wave velocity measurement and site class. Temperature corrections are suggested and discussed for penetrometer equipment according to laboratory calibrations. The significance of the effects due to radical temperature changes in Canada and Ottawa is discussed. Some of the main findings from this research are as follows. • The Canadian Foundation Engineering Manual presents a correlation between standard penetration tests (SPTs) and the undrained shear strength of soils. This relationship may not be applicable to sensitive marine clays in Ottawa. • Another correlation between the site class, shear wave velocity, and undrained shear strength is presented by this same manual which may not be applicable to sensitive marine clays in Ottawa. • The rotation rate for field vane testing as recommended by ASTM D2573 is slow for sensitive marine clays in Ottawa. • Correction factors applied to undrained shear strength from laboratory vane tests may not result in comparable values with the undrained shear strength obtained by using field vane tests. • Loading schemes in consolidation or oedometer testing may affect the quality of the targeted results. • Temperature corrections should be applied to penetrometer recordings to compensate for the drift in the results of these recordings due to temperature changes. • The secondary compression index to compression index ratio presented in the literature may not be the value obtained from this research.
6

Climate Change Impact on Rainfall-Induced Landslides in Ottawa Sensitive Marine Clays

Panikom, Nattawadee 18 September 2020 (has links)
The City of Ottawa is situated in an area known as the Champlain Sea, 17,000 years before present (BP) the entire area was covered with sea water. This area deposited marine clays which are known to be highly sensitive. The City of Ottawa needs to expand land use to allow for the expansion of infrastructure and housing to support its growth. This study is intended to assist the City of Ottawa’s geotechnical engineers in their decision-making by identifying future sensitive areas prone to landslides due to rainfall based on future climate model data. The project incorporates rainfall intensities from downscaled climate model data in the Transient Rainfall Infiltration and Grid-based Regional Slope-Stability (TRIGRS) model to investigate areas sensitive to landslides, then within a GIS platform, the future landslide susceptibility maps were created based on Factor of Safety (FS) values showing the areas prone to landslides. The data input for the model includes climate model data, topography, hydrogeology, geology and geophysical data obtained from a previous study. These data were prepared using ArcGIS software and converted into ascii format for TRIGRS model. The model was calibrated using historical rainfall intensities and validated by comparing to historical landslide areas. Sensitivity analysis were performed to ranges of geotechnical properties found within sensitive marine clays in the area to find the values best to create the ideal scenario, normal scenario and worst-case model scenario for the prediction. Rainfall intensities from projected climate data Intensities Duration Frequency (IDF) of 10 years and 50 years returning period and rainfall intensities of 12 hr, 24 hr, and 48 hr were selected for the model. Results from simulations find the projected climate rainfall intensity do not have impact or has minimal impact to slope stability in sensitive marine clay areas in Ottawa directly. However, higher rainfall runoff is expected from projected rainfall RCP8.5 than the RCP4.5. The infiltration rate remains constant throughout each simulation, which is the same value as the hydraulic conductivity. The time when the slope becomes unstable varies depending on initial water levels. Results from the ideal and normal scenario show no areas prone to slope failure after 48 hours of rainfall duration. However, the factor of safety decreases as the rainfall duration increases and is expected to decrease with longer rainfall durations. The worst-case scenario shows some areas prone to slope failure (FS < 1) with 2% probability of slope failure at 48 hours of rainfall duration. The distribution of these unstable areas are located along the Ottawa River, Rideau River, Carp River, Mississippi River and valleys along their tributaries, the majority of the area prone to slope instability from rainfall are in the east part of the City of Ottawa. While there are many uncertainties and limitations which contribute to the model results, this study is useful to engineers and planners in initial implementation of mitigation strategies to mitigate the damages and cost from landslides events. The susceptibility maps can also assist in decision making for planners in developing into these areas.
7

Influence of Chemo-Mechanical Factors on Compression and Undrained Strengths of Soft Kaolinites Prepared using Synthetic Seawater

Deepak, G B January 2016 (has links) (PDF)
Marine clay deposits are characterized by very soft to soft consistencies (undrained strength 1-50 kPa), presence of saline pore solution and low-swelling clays. Besides, loss of metastable structure on disturbance, poor undrained strengths of soft clays is contributed by high water contents. Presence of saline pore solution and low-swelling clays (illite, chlorite, kaolinite) play an important role in developing metastable structure of soil sediments deposited in marine environment. The pore solution salinity regulates the “physico-chemical (A - R) stress” that in turn has significant bearing on development of the metastable structure. Metastable structure refers to edge-face, edge-edge associations in card-house arrangement of platy/elongate particles that develop during deposition. Loss of metastable structure of soft marine clays upon disturbance leads to excessive settlements and slope failures. Besides A - R forces, metastable structure of marine clays is contributed by cementation bonds, thixotropic hardening, ion leaching, formation or addition of dispersing agents and chemical weathering. Secondary compression also causes bonding of micro-structural units that increase stiffness and strength of the metastable structure. Review of literature brings out that majority of studies examining the role of physico-chemical factors on the engineering behavior of marine clays have focused on illite rich sediments. However, non-swelling clay, namely, kaolinite is also encountered in marine deposits (example, Pusan clay, Singapore clay, Sarapui soft clays). Kaolinites differ from illites in being 1:1 mineral (unit layer comprises of 1 silica sheet bonded to 1 gibbsite sheet) and having strong hydrogen bonding between unit layers. Consequently, kaolinite particles are thick (0.3 to 3 ìm thickness) with low surface area (10 to 20 m2/g). Also the hydrogen bonding between unit layers do not allow them to separate on hydration. Combination of very low isomorphous substitution (Al for Si 1 in 400), low cation exchange capacity (3 meq/100g), and low surface area, lead to negligible development of diffuse double layer repulsion forces between kaolinite particles. Strong positive edge (developed on broken bonds at particle edges from adsorption of hydrogen ions) negative face attraction between kaolinite particles, encourages flocculation of particles at range of water contents. It was therefore considered of interest to examine the engineering response of kaolinites to changes in pore solution salinity from leaching effects. The focus of the thesis is hence to gain better understanding of physico-chemical (pore solution salinity, A - R forces) and mechanical (secondary compression, loss of overburden) factors towards development of metastable structure of kaolinite clays deposited in synthetic seawater environments in the context of their compressibility and undrained strength characteristics. Laboratory experiments are performed with kaolinites that are slurry consolidated in conventional consolidometers in saline and synthetic seawater solutions. The metastable structure developed by consolidated specimens is relevant to alluvial marine sediments that contain kaolinite (example, Pusan clay, Singapore clay, Sarapui soft clays). The structure of the thesis is as follows: Chapter 1 gives an introduction to the thesis. Chapter 2 provides a detailed review of literature on the role of chemical factors (pore solution composition, A - R forces, osmotic suction) and mechanical processes (secondary compression and overconsolidation) in developing metastable structure of kaolinite specimens subjected to slurry consolidation and the consequent influence of metastable structure on compression, undrained strength and sensitivity characteristics of clay specimens. The Chapter also defines the scope and objectives of the study. Chapter 3 details the experimental program undertaken to bring out the role of chemical factors and mechanical processes in influencing the 1-dimensional compression and undrained strength characteristics of slurry consolidated kaolinites prepared in saline medium. Chapter 4 delineates the role of chloride salt solutions (sodium, magnesium and calcium) and synthetic seawater solution in contributing to the metastable structure developed by slurry consolidated kaolinites at various vertical effective stress (óv’) and the consequent influence of metastable structure on 1-dimensional compression, undrained strength and sensitivity characteristics of the clay. Chapter 5 examines influence of secondary compression on metastable structure developed by kaolinites that were slurry consolidated in 24.53 g/L sodium chloride and synthetic seawater solutions and the consequence of the developed metastable structure on undrained strength and sensitivity. The chapter also examines the consequences of secondary compression experienced by soft overconsolidated kaolinites on their undrained strength and sensitivity characteristics. Chapter 6 examines the relative influence of differential osmotic stress and electrochemical stress on the consolidation behaviour of kaolinite specimens that are slurry consolidated in sodium chloride solutions. The osmotic efficiencies (á) of kaolinite were obtained using the Fritz-Marine Membrane Model. Chapter 7 summarizes the major conclusions of the thesis.

Page generated in 0.0944 seconds