• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The distribution and diversity of macroalgae in selected estuaries along the Eastern Cape coast of South Africa

Prinsloo, Shireen January 2012 (has links)
The growth and accumulation of macroalgae in estuaries are a common sight throughout the world (Boyer and Fong, 2005). Because macroalgae establish such complex but important links with other components within an estuary, it is essential to know which variables control and regulate their occurrences. The type of algae that will occur in an estuary depends however, on the physical and chemical features of the particular estuary (Lobban and Harrison, 1994). The focus of this study was to document and provide a listing of algae from estuaries around the Eastern Cape coast of South Africa and describe the communities which form within each estuarine habitat. The questions posed were: Do algae assemblages differ in estuaries with different environmental conditions? Are different plant communities inhabited by different algae communities? Also, are algae diverse in estuaries that are in a pristine condition? The estuaries were Mngazana, Ngqusi/Nxaxo, Mtati, Mpekweni, East Kleinemonde, West Kleinemonde, Kariega, Bushmans, Kowie and the Sundays estuary. Percentage cover surveys were conducted and environmental parameters recorded to determine community structure of algae and their environmental tolerances. A total of 49 different macroalgal species were identified from 11 estuaries, which were dominated by Chlorophytes (23 species) and Rhodophytes (17 species). The Ochrophytes consisted of 10 species. The highest number of species recorded was 29 at the Bushmans estuary (March 2009), while the lowest number (4 species) was recorded at Mtati (October 2008). Common Chlorophytes found included Ulva prolifera, Chaetomorpha linum and Codium tenue. In the Division Ochrophyta, species from the Genus Ectocarpus were the most common. Of the red algae filamentous reds, Polysiphonia incompta and Polysiphonia kowiensis were the common algae found at estuaries. Salinity (p= 0.029861; n= 49) and temperature (p= 0.037641; n= 49) were the driving environmental parameters of estuaries and significantly influenced richness of species. In ordination analyses, patterns of biogeographic distribution were noticeable and were described by salinity. Four gradients caused by salinity were therefore found – which is inversely correlated to water clarity. Moreover, a clear split between temporarily open/closed and the permanently open estuaries was observed. Samples grouped into four communities presumably based on the similarity in conditions of estuaries. Within each estuarine community and major type of estuary there was a range of environmental conditions. However, the macroalgae within each community may not have been colonists of or found in greatest abundances in the estuaries of these communities per se, but may have grouped together in this manner based on the optimum growing conditions for them. Also, specific algal groups were not directly determined by the type of estuary they were found in; they were driven by environmental ranges rather. The results therefore support hypothesis one which states species distribution and diversity differ and are influenced by environmental gradients of the estuary. Although close species and habitat relationships were apparent from the ordination analyses, providing support for hypothesis two which states “Different plant communities in estuaries will be inhabited by different macroalgae communities”, the evidence was not substantial enough to provide sufficient support for the hypothesis. Lastly, the hypothesis “Macroalgae are diverse in estuaries that are in a pristine condition” was not accepted as highest species numbers were found in estuaries of greatest anthropogenic disturbance (e.g. Bushmans estuary) and not in estuaries which where ecologically more natural (e.g. Mtati estuary). By doing monthly macroalgal sampling over a period of one year for example one would obtain greater information of biodiversity, and patterns of macroalgal seasonality may be uncovered as well. This is an area of reasearch which needs to be investigated in the future as it would greatly add to the understanding of the role macroalge have in an estuarine environment.
12

Tillväxt och etablering efter nyplantering av ålgräs (Zostera marina) i Halland

Rathsman, Jens, Ljung, Angelica January 2023 (has links)
Ålgräs fungerar som ekosystemingenjörer som förser både människan och naturen med en mängd viktiga ekosystemtjänster och tillhandahåller olika ekosystemfunktioner. Ålgräsängens vegetation skapar en fysisk struktur till den annars kala, mjuka ler- eller sandbottnen och ökar den biologiska mångfalden. En annan viktig funktion som ålgräsängar skapar är habitat som fungerar som barnkammare för olika fiskarter, såsom torsk, flundror och sej. Det uppskattas att cirka 30% av de kända arealerna av ålgräsängar har försvunnit globalt och att 7% försvinner årligen. I Sverige kan liknande historiska förluster av ålgräs visas, bara i Bohuslän har 60% försvunnit sedan 1980-talet och ålgräsängarna fortsätter att minska till följd av fortsatt exploatering av kustområden. I detta projekt har vi undersökt ålgräsets förmåga till etablering samt dess tillväxt efter förflyttning och omplantering i ett nytt habitat vid Hallands kust. Plantering av ålgräs har inte tidigare gjorts i Halland och syftet med denna studie var att se om plantering var möjligt och hur stor tillväxt det sker på blad samt antal nya tillväxande vegetativa skott.Våra resultat visade att det fanns signifikanta skillnader för ålgräsets överlevnad mellan de tre olika metoder som vi utförde vid plantering. Vår metod singelskottsmetoden visade sig vara mest lyckad vid platsen, som låg på ett område med relativt hög våg- och vindexponering, vilket vi anser är typiskt för den Halländska kusten. De andra två metoderna, nätmetoden samt grillspettsmetoden, som användes inkluderade förankring av plantorna vilket resulterade i sämre överlevnad. Detta kan ha berott på att det fanns flera stressfaktorer vid platsen som vågor, vind och algpåväxt och att förankring störde ålgräsets etablering. / Eelgrass act as ecosystem engineers, providing both humans and nature with a variety of important ecosystem services and providing various ecosystem functions. The vegetation that eelgrass beds provide is a physical structure to the otherwise bare, soft clay or sand seabed and increases biodiversity. Another important function that eelgrass beds provide is that they create habitats that act as nurseries for various fish species, such as cod, flounder and pollock. It is estimated that around 30% of the known areas of eelgrass meadows have disappeared globally and that 7% is decreasing annually. In Sweden, similar historical losses of eelgrass can be seen, only in Bohuslän, 60% has disappeared since the 1980s and continues to decrease as a result of continued exploitation of coastal areas.  In this project, we have investigated the ability of eelgrass to establish as well as its growth after relocation and replanting in a new habitat on the coast of Halland. Planting of eelgrass has not previously been done in Halland, so the purpose of this study was to see if this was possible and how much growth occurs on leaves and the amount of new growing vegetative shoots. Our results showed that there were significant differences in the survival of the eelgrass between the three different methods we used when planting. Our method the single-shoot method proved to be most successful at the site, which was in an area with relatively high wave and wind exposure, which we believe is typical for the coast of Halland. The other two methods used, the netmethod and skewermethod, included anchoring the plants which resulted in poorer survival. This may have been because there were several stress factors at the site such as waves, wind and algae growth and that anchoring disturbed the establishment of the eelgrass.

Page generated in 0.0752 seconds