61 |
Stepwise evolutionary training strategies for hardware neural networksHohmann, Steffen Gunther. Unknown Date (has links) (PDF)
University, Diss., 2005--Heidelberg.
|
62 |
Gaussian process models for robust regression, classification, and reinforcement learningKuß, Malte. Unknown Date (has links)
Techn. University, Diss., 2006--Darmstadt.
|
63 |
15 Jahre Künstliche Intelligenz an der TU ChemnitzSteinmüller, Johannes, Langner, Holger, Ritter, Marc, Zeidler, Jens 11 July 2008 (has links) (PDF)
Der vorliegende Band der Informatikberichte ist dem wissenschaftlichen Lebenswerk von Prof. Werner Dilger gewidmet. Seit Oktober 1993 hat er an der Fakultät für Informatik der TU Chemnitz hervorragende Arbeit in Forschung und Lehre geleistet. Dank der Mitarbeit zahlreicher Autoren beleuchtet der vorliegende Band eine große Vielfalt unterschiedlicher Aspekte der Künstlichen Intelligenz.
|
64 |
Beherrschbares Online-Lernen durch inkrementelle, lokale RegularisierungRosemann, Nils 17 June 2013 (has links)
Beim Entwurf von Regelungen für technische Prozesse werden klassischerweise modellbasierte Entwurfsmethoden eingesetzt. Diese stoßen jedoch an Grenzen, wenn der Aufwand für eine ausreichend genaue Modellierung zu hoch wird oder das Modell aufgrund der Zeitvarianz des Prozesses seine Validität verliert. Die Alternative besteht
darin, zur Entwurfszeit nur einen Sicherheitsrahmen zu stecken und das Detailwissen, wie genau der technische Prozess zu regeln ist, erst zur Laufzeit durch maschinelle Lernverfahren zu optimieren. Um aber den Erfolg und die Sicherheit eines solchen Lernvorgangs gewährleisten zu können ohne wiederum ein formales Modell zu benötigen, muss der zur Entwurfszeit gesteckte Sicherheitsrahmen ausreichend eng sein, darf aber nur Hintergrundwissen nutzen, das dem Entwickler ohne ein Modell auch zur Verfügung steht. In dieser Arbeit wird argumentiert, dass ein entsprechender Sicherheitsrahmen durch in der Literatur vorhandene Entwurfsmethoden grundlegend erreicht werden kann, aber auch gezeigt, dass eine bestimmt Art von solchem Hintergrundwissen, nämlich erwartete funktionale Eigenschaften der zu lernenden Reglerabbildung, in der Literatur bisher nur in Form des SILKE-Ansatzes ausgenutzt
wird. Dieser Ansatz wird in der vorliegenden Arbeit erweitert und formal als inkrementelle, lokale Regularisierung dargelegt. Somit lässt sich das Hintergrundwissen über erwartete funktionale Eigenschaften gezielt für einen robusteren Lernvorgang ausnutzen. Diese Arbeit legt die formalen Grundlagen für eine stabile Arbeitsweise der dazu nötigen Algorithmen, entwickelt Entwurfsrichtlinien und zeigt wesentliche Charakteristika des Zusammenspiels von inkrementellem Lernen und inkrementeller Regularisierung. Schließlich wird an realen technischen Prozessen demonstriert, dass ein regularisierter Lernvorgang im geschlossenen Wirkungskreis systematisch robuster wird.
|
65 |
Visual Human Body Weight Estimation with Focus on Clinical Applications / Optische Körpergewichtsschätzung für medizinische AnwendungenPfitzner, Christian January 2019 (has links) (PDF)
It is the aim of this thesis to present a visual body weight estimation, which is suitable for medical applications. A typical scenario where the estimation of the body weight is essential, is the emergency treatment of stroke patients: In case of an ischemic stroke, the patient has to receive a body weight adapted drug, to solve a blood clot in a vessel. The accuracy of the estimated weight influences the outcome of the therapy directly. However, the treatment has to start as early as possible after the arrival at a trauma room, to provide sufficient treatment. Weighing a patient takes time, and the patient has to be moved. Furthermore, patients are often not able to communicate a value for their body weight due to their stroke symptoms. Therefore, it is state of the art that physicians guess the body weight. A patient receiving a too low dose has an increased risk that the blood clot does not dissolve and brain tissue is permanently damaged. Today, about one-third gets an insufficient dosage. In contrast to that, an overdose can cause bleedings and further complications. Physicians are aware of this issue, but a reliable alternative is missing.
The thesis presents state-of-the-art principles and devices for the measurement and estimation of body weight in the context of medical applications. While scales are common and available at a hospital, the process of weighing takes too long and can hardly be integrated into the process of stroke treatment. Sensor systems and algorithms are presented in the section for related work and provide an overview of different approaches.
The here presented system -- called Libra3D -- consists of a computer installed in a real trauma room, as well as visual sensors integrated into the ceiling. For the estimation of the body weight, the patient is on a stretcher which is placed in the field of view of the sensors. The three sensors -- two RGB-D and a thermal camera -- are calibrated intrinsically and extrinsically. Also, algorithms for sensor fusion are presented to align the data from all sensors which is the base for a reliable segmentation of the patient.
A combination of state-of-the-art image and point cloud algorithms is used to localize the patient on the stretcher. The challenges in the scenario with the patient on the bed is the dynamic environment, including other people or medical devices in the field of view.
After the successful segmentation, a set of hand-crafted features is extracted from the patient's point cloud. These features rely on geometric and statistical values and provide a robust input to a subsequent machine learning approach. The final estimation is done with a previously trained artificial neural network.
The experiment section offers different configurations of the previously extracted feature vector. Additionally, the here presented approach is compared to state-of-the-art methods; the patient's own assessment, the physician's guess, and an anthropometric estimation. Besides the patient's own estimation, Libra3D outperforms all state-of-the-art estimation methods: 95 percent of all patients are estimated with a relative error of less than 10 percent to ground truth body weight. It takes only a minimal amount of time for the measurement, and the approach can easily be integrated into the treatment of stroke patients, while physicians are not hindered.
Furthermore, the section for experiments demonstrates two additional applications: The extracted features can also be used to estimate the body weight of people standing, or even walking in front of a 3D camera. Also, it is possible to determine or classify the BMI of a subject on a stretcher. A potential application for this approach is the reduction of the radiation dose of patients being exposed to X-rays during a CT examination.
During the time of this thesis, several data sets were recorded. These data sets contain the ground truth body weight, as well as the data from the sensors. They are available for the collaboration in the field of body weight estimation for medical applications. / Diese Arbeit zeigt eine optische Körpergewichtsschätzung, welche für medizinische Anwendungen geeignet ist. Ein gängiges Szenario, in dem eine Gewichtsschätzung benötigt wird, ist die Notfallbehandlung von Schlaganfallpatienten: Falls ein ischämischer Schlaganfall vorliegt, erhält der Patient ein auf das Körpergewicht abgestimmtes Medikament, um einen Thrombus in einem Gefäß aufzulösen. Die Genauigkeit der Gewichtsschätzung hat direkten Einfluss auf den Erfolg der Behandlung. Hinzu kommt, dass die Behandlung so schnell wie möglich nach der Ankunft im Krankenhaus erfolgen muss, um eine erfolgreiche Behandlung zu garantieren. Das Wiegen eines Patienten ist zeitaufwändig und der Patient müsste hierfür bewegt werden. Des Weiteren können viele Patienten aufgrund des Schlaganfalls nicht ihr eigenes Gewicht mitteilen. Daher ist es heutzutage üblich, dass Ärzte das Gewicht schätzen. Erhält ein Patient eine zu geringe Dosis, steigt das Risiko, dass sich der Thrombus nicht auflöst und das Gehirngewebe dauerhaft geschädigt bleibt. Eine Überdosis kann dagegen zu Blutungen und weiteren Komplikationen führen. Ein Drittel der Patienten erhält heutzutage eine unzureichende Dosis. Ärzte sind sich dessen bewusst, aber derzeit gibt es kein alternatives Vorgehen.
Diese Arbeit präsentiert Elemente und Geräte zur Messung und Schätzung des Körpergewichts,
die im medizinischen Umfeld verwendet werden.
Zwar sind Waagen im Krankenhaus üblich, aufgrund des engen Zeitfensters für die Behandlung können sie aber nur schlecht in den Behandlungsablauf von Schlaganfallpatienten integriert werden. Der Abschnitt zum Stand der Technik zeigt verschiedene Sensorsysteme und Algorithmen. Das hier gezeigte System -- genannt Libra3D -- besteht aus einem Computer im Behandlungsraum, sowie den in der Decke integrierten optischen Sensoren. Für die Gewichtsschätzung befindet sich der Patient auf einer Liege im Blickfeld der Sensoren. Die drei Sensoren -- zwei RGB-D- und einer Wärmebildkamera -- sind intrinsisch und extrinsisch kalibriert.
Des Weiteren werden Algorithmen zur Sensorfusion vorgestellt, welche die Daten für eine erfolgreiche Segmentierung des Patienten zusammenführen. Eine Kombination aus verschiedenen gängigen Bildverarbeitungs- und Punktwolken-Algorithmen lokalisiert den Patienten auf der Liege. Die Herausforderung in diesem Szenario mit dem Patienten auf dem Bett sind ständige Veränderungen, darunter auch andere Personen oder medizinische Geräte im Sichtfeld. Nach der erfolgreichen Segmentierung werden Merkmale von der Punktwolke des Patienten extrahiert. Diese Merkmale beruhen auf geometrischen und statistischen Eigenschaften und bieten robuste Werte für das nachfolgende maschinelle Lernverfahren. Die Schätzung des Gewichts basiert letztlich auf einem zuvor trainierten künstlichen neuronalen Netz.
Das Kapitel zu den Experimenten zeigt verschiedene Kombinationen von Werten aus dem Merkmalsvektor. Zusätzlich wird der Ansatz mit Methoden aus dem Stand der Technik verglichen: der Schätzung des Patienten, des Arztes, und einer anthropometrischen Schätzung. Bis auf die eigene Schätzung des Patienten übertrifft Libra3D hierbei alle anderen Methoden: 95 Prozent aller Schätzungen weisen einen relativen Fehler von weniger als 10 Prozent zum realen Körpergewicht auf. Dabei benötigt das System wenig Zeit für eine Messung und kann einfach in den Behandlungsablauf von Schlaganfallpatienten integriert werden, ohne Ärzte zu behindern. Des Weiteren zeigt der Abschnitt für Experimente zwei weitere Anwendungen: Die extrahierten Merkmale können dazu verwendet werden das Gewicht von stehenden und auch laufenden Personen zu schätzen, die sich vor einer 3D-Kamera befinden. Darüber hinaus ist es auch möglich den BMI von Patienten auf einer Liege zu bestimmen. Diese kann die Strahlenexposition bei CT-Untersuchungen beispielsweise verringern. Während dieser Dissertation sind einige Datensätze entstanden. Sie enthalten das reale Gewicht, sowie die dazugehörigen Sensordaten. Die Datensätze sind für die Zusammenarbeit im Bereich der Körpergewichtsschätzung für medizinische Anwendungen verfügbar.
|
66 |
Data-driven Operations Management: Combining Machine Learning and Optimization for Improved Decision-making / Datengetriebenes Operations Management: Kombination von maschinellem Lernen und Optimierung zur besseren EntscheidungsunterstützungMeller, Jan Maximilian January 2020 (has links) (PDF)
This dissertation consists of three independent, self-contained research papers that investigate how state-of-the-art machine learning algorithms can be used in combination with operations management models to consider high dimensional data for improved planning decisions. More specifically, the thesis focuses on the question concerning how the underlying decision support models change structurally and how those changes affect the resulting decision quality.
Over the past years, the volume of globally stored data has experienced tremendous growth. Rising market penetration of sensor-equipped production machinery, advanced ways to track user behavior, and the ongoing use of social media lead to large amounts of data on production processes, user behavior, and interactions, as well as condition information about technical gear, all of which can provide valuable information to companies in planning their operations. In the past, two generic concepts have emerged to accomplish this. The first concept, separated estimation and optimization (SEO), uses data to forecast the central inputs (i.e., the demand) of a decision support model. The forecast and a distribution of forecast errors are then used in a subsequent stochastic optimization model to determine optimal decisions. In contrast to this sequential approach, the second generic concept, joint estimation-optimization (JEO), combines the forecasting and optimization step into a single optimization problem. Following this approach, powerful machine learning techniques are employed to approximate highly complex functional relationships and hence relate feature data directly to optimal decisions.
The first article, “Machine learning for inventory management: Analyzing two concepts to get from data to decisions”, chapter 2, examines performance differences between implementations of these concepts in a single-period Newsvendor setting. The paper first proposes a novel JEO implementation based on the random forest algorithm to learn optimal decision rules directly from a data set that contains historical sales and auxiliary data. Going forward, we analyze structural properties that lead to these performance differences. Our results show that the JEO implementation achieves significant cost improvements over the SEO approach. These differences are strongly driven by the decision problem’s cost structure and the amount and structure of the remaining forecast uncertainty.
The second article, “Prescriptive call center staffing”, chapter 3, applies the logic of integrating data analysis and optimization to a more complex problem class, an employee staffing problem in a call center. We introduce a novel approach to applying the JEO concept that augments historical call volume data with features like the day of the week, the beginning of the month, and national holiday periods. We employ a regression tree to learn the ex-post optimal staffing levels based on similarity structures in the data and then generalize these insights to determine future staffing levels. This approach, relying on only few modeling assumptions, significantly outperforms a state-of-the-art benchmark that uses considerably more model structure and assumptions.
The third article, “Data-driven sales force scheduling”, chapter 4, is motivated by the problem of how a company should allocate limited sales resources. We propose a novel approach based on the SEO concept that involves a machine learning model to predict the probability of winning a specific project. We develop a methodology that uses this prediction model to estimate the “uplift”, that is, the incremental value of an additional visit to a particular customer location. To account for the remaining uncertainty at the subsequent optimization stage, we adapt the decision support model in such a way that it can control for the level of trust in the predicted uplifts. This novel policy dominates both a benchmark that relies completely on the uplift information and a robust benchmark that optimizes the sum of potential profits while neglecting any uplift information.
The results of this thesis show that decision support models in operations management can be transformed fundamentally by considering additional data and benefit through better decision quality respectively lower mismatch costs. The way how machine learning algorithms can be integrated into these decision support models depends on the complexity and the context of the underlying decision problem. In summary, this dissertation provides an analysis based on three different, specific application scenarios that serve as a foundation for further analyses of employing machine learning for decision support in operations management. / Diese Dissertation besteht aus drei inhaltlich abgeschlossenen Teilen, welche ein gemeinsames Grundthema besitzen: Wie lassen sich neue maschinelle Lernverfahren in Entscheidungsunterstützungsmodelle im Operations Management einbetten, sodass hochdimensionale, planungsrelevante Daten für bessere Entscheidungen berücksichtigt werden können? Ein spezieller Fokus liegt hierbei auf der Fragestellung, wie die zugrunde liegenden Planungsmodelle strukturell angepasst werden müssen und wie sich in Folge dessen die Qualität der Entscheidungen verändert.
Die vergangenen Jahre haben ein starkes Wachstum des global erzeugten und zur Verfügung stehenden Datenvolumens gezeigt. Die wachsende Verbreitung von Sensoren in Produktionsmaschinen und technischen Geräten, Möglichkeiten zur Nachverfolgung von Nutzerverhalten sowie die sich verstärkende Nutzung sozialer Medien führen zu einer Fülle von Daten über Produktionsprozesse, Nutzerverhalten und -interaktionen sowie Zustandsdaten und Interaktionen von technischen Geräten. Unternehmen möchten diese Daten nun für unterschiedlichste betriebswirtschaftliche Entscheidungsprobleme nutzen. Hierfür haben sich zwei grundsätzliche Ansätze herauskristallisiert: Im ersten, sequentiellen Verfahren wird zunächst ein Vorhersagemodell erstellt, welches zentrale Einflussgrößen (typischerweise die Nachfrage) vorhersagt. Die Vorhersagen werden dann in einem nachgelagerten Optimierungsproblem verwendet, um unter Berücksichtigung der verbliebenen Vorhersageunsicherheit eine optimale Lösung zu ermitteln. Im Gegensatz zu diesem traditionellen, zweistufigen Vorgehensmodell wurde in den letzten Jahren eine neue Klasse von Planungsmodellen entwickelt, welche Vorhersage und Entscheidungsunterstützung in einem integrierten Optimierungsmodell kombinieren. Hierbei wird die Leistungsfähigkeit maschineller Lernverfahren genutzt, um automatisiert Zusammenhänge zwischen optimalen Entscheidungen und Ausprägungen von bestimmten Kovariaten direkt aus den vorhandenen Daten zu erkennen.
Der erste Artikel, “Machine learning for inventory management: Analyzing two concepts to get from data to decisions”, Kapitel 2, beschreibt konkrete Ausprägungen dieser beiden Ansätze basierend auf einem Random Forest Modell für ein Bestandsmanagementszenario. Es wird gezeigt, wie durch die Integration des Optimierungsproblems in die Zielfunktion des Random Forest-Algorithmus die optimale Bestandsmenge direkt aus einem Datensatz bestimmt werden kann. Darüber hinaus wird dieses neue, integrierte Verfahren anhand verschiedener Analysen mit einem äquivalenten klassischen Vorgehen verglichen und untersucht, welche Faktoren Performance-Unterschiede zwischen den Verfahren treiben. Hierbei zeigt sich, dass das integrierte Verfahren signifikante Verbesserungen im Vergleich zum klassischen, sequentiellen, Verfahren erzielt. Ein wichtiger Einflussfaktor auf diese Performance-Unterschiede ist hierbei die Struktur der Vorhersagefehler beim sequentiellen Verfahren.
Der Artikel “Prescriptive call center staffing”, Kapitel 3, überträgt die Logik, optimale Planungsentscheidungen durch integrierte Datenanalyse und Optimierung zu bestimmen, auf eine komplexere Problemklasse, die Schichtplanung von Mitarbeitern. Da die höhere Komplexität eine direkte Integration des Optimierungsproblems in das maschinelle Lernverfahren nicht erlaubt, wird in dem Artikel ein Datenvorverarbeitungsverfahren entwickelt, mit dessen Hilfe die Eingangsdaten mit den ex post-optimalen Entscheidungen angereichert werden. Durch die Vorverarbeitung kann dann eine angepasste Variante des Regression Tree Lernverfahrens diesen Datensatz nutzen, um optimale Entscheidungen zu lernen. Dieses Verfahren, welches mit sehr wenigen und schwachen Modellierungsannahmen bezüglich des zugrunde liegenden Problems auskommt, führt zu deutlich geringeren Kosten durch Fehlplanungen als ein konkurrierendes Verfahren mit mehr Modellstruktur und -annahmen.
Dem dritten Artikel, “Data-driven sales force scheduling”, Kapitel 4, liegt ein noch komplexeres Planungsproblem, die Tourenplanung von Außendienstmitarbeitern, zugrunde. Anhand eines konkreten Anwendungsszenarios bei einem Farben- und Lackhersteller beschreibt der Artikel, wie maschinelle Lernverfahren auch bei Einsatz im traditionellen, sequentiellen Ansatz als reine Vorhersagemodelle die nachgelagerten Entscheidungsmodelle verändern können. In diesem Fall wird ein Entscheidungsbaum-basiertes Lernverfahren in einem neuartigen Ansatz verwendet, um den Wert eines Besuchs bei einem potentiellen Kunden abzuschätzen. Diese Informationen werden dann in einem Optimierungsmodell, welches die verbliebene Unsicherheit der Vorhersagen berücksichtigen kann, zur Routenplanung verwendet. Es wird ersichtlich, dass Daten und fortschrittliche Analyseverfahren hier den Einsatz von neuen Optimierungsmodellen erlauben, welche vorher mangels zuverlässiger Schätzung von wichtigen Eingangsfaktoren nicht nutzbar waren.
Die in dieser Dissertation erarbeiteten Ergebnisse belegen, dass betriebswirtschaftliche Planungsmodelle durch die Berücksichtigung neuer Daten und Analysemethoden fundamental verändert werden und davon in Form von besserer Entscheidungsqualität bzw. niedrigerer Kosten durch Fehlplanungen profitieren. Die Art und Weise, wie maschinelle Lernverfahren zur Datenanalyse eingebettet werden können, hängt hierbei von der Komplexität sowie der konkreten Rahmenparameter des zu Grunde liegenden Entscheidungsproblems ab. Zusammenfassend stellt diese Dissertation eine Analyse basierend auf drei unterschiedlichen, konkreten Anwendungsfällen dar und bildet damit die Grundlage für weitergehende Untersuchungen zum Einsatz von maschinellen Lernverfahren bei der Entscheidungsunterstützung für betriebswirtschaftliche Planungsprobleme.
|
67 |
Data-driven Operations Management: From Predictive to Prescriptive Analytics / Datenbasiertes Operations Management: Von prädiktiven zu präskriptiven VerfahrenTaigel, Fabian Michael January 2020 (has links) (PDF)
Autonomous cars and artificial intelligence that beats humans in Jeopardy or Go are glamorous examples of the so-called Second Machine Age that involves the automation of cognitive tasks [Brynjolfsson and McAfee, 2014]. However, the larger impact in terms of increasing the efficiency of industry and the productivity of society might come from computers that improve or take over business decisions by using large amounts of available data. This impact may even exceed that of the First Machine Age, the industrial revolution that started with James Watt’s invention of an efficient steam engine in the late eighteenth century. Indeed, the prevalent phrase that calls data “the new oil” indicates the growing awareness of data’s importance. However, many companies, especially those in the manufacturing and traditional service industries, still struggle to increase productivity using the vast amounts of
data [for Economic Co-operation and Development, 2018].
One reason for this struggle is that companies stick with a traditional way of using data for decision support in operations management that is not well suited to automated decision-making. In traditional inventory and capacity management, some data – typically just historical demand data – is used to estimate a model that makes predictions about uncertain planning parameters, such as customer demand. The planner then has two tasks: to adjust the prediction with respect to additional information that was not part of the data but still might influence demand and to take the remaining uncertainty into account and determine a safety buffer based on the underage and overage costs. In the best case, the planner determines the safety buffer based on an optimization model that takes the costs and the distribution of historical forecast errors into account; however, these decisions are usually based on a planner’s experience and intuition, rather than on solid data analysis.
This two-step approach is referred to as separated estimation and optimization (SEO). With SEO, using more data and better models for making the predictions would improve only the first step, which would still improve decisions but would not automize (and, hence, revolutionize) decision-making. Using SEO is like using a stronger horse to pull the plow: one still has to walk behind.
The real potential for increasing productivity lies in moving from predictive to prescriptive approaches, that is, from the two-step SEO approach, which uses predictive models in the estimation step, to a prescriptive approach, which integrates the optimization problem with the estimation of a model that then provides a direct functional relationship between the data and the decision. Following Akcay et al. [2011], we refer to this integrated approach as joint estimation-optimization (JEO). JEO approaches prescribe decisions, so they can automate the decision-making process. Just as the steam engine replaced manual work, JEO approaches replace cognitive work.
The overarching objective of this dissertation is to analyze, develop, and evaluate new ways for how data can be used in making planning decisions in operations management to unlock the potential for increasing productivity. In doing so, the thesis comprises five self-contained research articles that forge the bridge from predictive to prescriptive approaches. While the first article focuses on how sensitive data like condition data from machinery can be used to make predictions of spare-parts demand, the remaining articles introduce, analyze, and discuss prescriptive approaches to inventory and capacity management.
All five articles consider approach that use machine learning and data in innovative ways to improve current approaches to solving inventory or capacity management problems. The articles show that, by moving from predictive to prescriptive approaches, we can improve data-driven operations management in two ways: by making decisions more accurate and by automating decision-making. Thus, this dissertation provides examples of how digitization and the Second Machine Age can change decision-making in companies to increase efficiency and productivity. / Diese Dissertation besteht aus fünf inhaltlich abgeschlossenen Teilen, die ein übergeordnetes Thema zur Grundlage haben: Wie können Daten genutzt werden, um bessere Bestands- und Kapazitätsplanung zu ermöglichen? Durch die zunehmende Digitalisierung stehen in verschiedensten Wirtschaftsbereichen mehr und mehr Daten zur Verfügung, die zur besseren Planung der Betriebsabläufe genutzt werden können. Historische Nachfragedaten, Sensordaten, Preisinformationen und Daten zu Werbemaßnahmen, sowie frei verfügbare Daten wie z.B. Wettervorhersagen, Daten zu Schulferien, regionalen Events, Daten aus den Sozialen Medien oder anderen Quellen enthalten potentiell relevante Informationen, werden aber häufig noch nicht zur Entscheidungsunterstützung genutzt.
Im ersten Artikel, ”Privacy-preserving condition-based forecasting using machine learning”, wird aufgezeigt, wie sensitive Zustandsdaten zur Nachfragevorhersage von Ersatzteilbedarfen nutzbar gemacht werden können. Es wird ein Modell entwickelt, das es erlaubt, Vorhersagen auf verschlüsselten Zustandsdaten zu erstellen. Dies ist z.B. in der Luftfahrt relevant, wo Dienstleister für die Wartung und Ersatzteilversorgung von Flugzeugen verschiedener Airlines zuständig sind. Da die Airlines befürchten, dass Wettbewerber an sensitive Echtzeitdaten gelangen können, werden diese Daten dem Wartungsdienstleister nicht im Klartext zur Verfügung gestellt. Die Ergebnisse des implementierten Prototyps zeigen, dass eine schnelle Auswertung maschineller Lernverfahren auch auf großen Datenmengen, die verschlüsselt in einer SAP HANA Datenbank gespeichert sind, möglich ist.
Die Artikel zwei und drei behandeln innovative, datengetriebene Ansätze zur Bestandsplanung. Der zweite Artikel ”Machine learning for inventory management: “Analyzing two concepts to get from data to decisions” analysiert zwei Ansätze, die Konzepte des maschinellen Lernens nutzen um aus historischen Daten Bestandsentscheidungen zu lernen. Im dritten Artikel, ”Machine learning for inventory management: Analyzing two concepts to get from data to decisions”, wird ein neues Modell zur integrierten Bestandsoptimierung entwickelt und mit einem Referenzmodell verglichen, bei dem die Schätzung eines Vorhersagemodells und die Optimierung der Bestandsentscheidung separiert sind. Der wesentliche Beitrag zur Forschung ist hierbei die Erkenntnis, dass unter bestimmten Bedingungen der integrierte Ansatz klar bessere Ergebnisse liefert und so Kosten durch Unter- bzw. Überbestände deutlich gesenkt werden können. In den Artikeln vier und fünf werden neue datengetriebene Ansätze zur Kapazitätsplanung vorgestellt und umfassend analysiert. Im vierten Artikel ”Datadriven capacity management with machine learning: A new approach and a case-study for a public service office wird ein datengetriebenes Verfahren zur Kapazitätsplanung eingeführt und auf das Planungsproblem in einem Bürgeramt angewandt. Das Besondere hierbei ist, dass die spezifische Zielfunktion (maximal 20% der Kunden sollen länger als 20 Minuten warten müssen) direkt in ein maschinelles Lernverfahren integriert wird, womit dann ein Entscheidungsmodell aus historischen Daten gelernt werden kann. Hierbei wird gezeigt, dass mit dem integrierten Ansatz die Häufigkeit langer Wartezeiten bei gleichem Ressourceneinsatz deutlich reduziert werden kann. Im fünften Artikel, ”Prescriptive call center staffing”, wird ein Modell zur integrierten Kapazitätsoptimierung für ein Call Center entwickelt. Hier besteht die Innovation darin, dass die spezifische Kostenfunktion eines Call Centers in ein maschinelles
Lernverfahren integriert wird. Die Ergebnisse für Daten von zwei Call Centern
zeigen, dass mit dem neuentwickelten Verfahren, die Kosten im Vergleich zu dem gängigen Referenzmodell aus der Literatur deutlich gesenkt werden
können.
|
68 |
Prescriptive Analytics for Data-driven Capacity Management / Prescriptive Analytics für datengetriebenes KapazitätsmanagementNotz, Pascal Markus January 2021 (has links) (PDF)
Digitization and artificial intelligence are radically changing virtually all areas across business and society. These developments are mainly driven by the technology of machine learning (ML), which is enabled by the coming together of large amounts of training data, statistical learning theory, and sufficient computational power. This technology forms the basis for the development of new approaches to solve classical planning problems of Operations Research (OR): prescriptive analytics approaches integrate ML prediction and OR optimization into a single prescription step, so they learn from historical observations of demand and a set of features (co-variates) and provide a model that directly prescribes future decisions. These novel approaches provide enormous potential to improve planning decisions, as first case reports showed, and, consequently, constitute a new field of research in Operations Management (OM).
First works in this new field of research have studied approaches to solving comparatively simple planning problems in the area of inventory management. However, common OM planning problems often have a more complex structure, and many of these complex planning problems are within the domain of capacity planning. Therefore, this dissertation focuses on developing new prescriptive analytics approaches for complex capacity management problems. This dissertation consists of three independent articles that develop new prescriptive approaches and use these to solve realistic capacity planning problems.
The first article, “Prescriptive Analytics for Flexible Capacity Management”, develops two prescriptive analytics approaches, weighted sample average approximation (wSAA) and kernelized empirical risk minimization (kERM), to solve a complex two-stage capacity planning problem that has been studied extensively in the literature: a logistics service provider sorts daily incoming mail items on three service lines that must be staffed on a weekly basis. This article is the first to develop a kERM approach to solve a complex two-stage stochastic capacity planning problem with matrix-valued observations of demand and vector-valued decisions. The article develops out-of-sample performance guarantees for kERM and various kernels, and shows the universal approximation property when using a universal kernel. The results of the numerical study suggest that prescriptive analytics approaches may lead to significant improvements in performance compared to traditional two-step approaches or SAA and that their performance is more robust to variations in the exogenous cost parameters.
The second article, “Prescriptive Analytics for a Multi-Shift Staffing Problem”, uses prescriptive analytics approaches to solve the (queuing-type) multi-shift staffing problem (MSSP) of an aviation maintenance provider that receives customer requests of uncertain number and at uncertain arrival times throughout each day and plans staff capacity for two shifts. This planning problem is particularly complex because the order inflow and processing are modelled as a queuing system, and the demand in each day is non-stationary. The article addresses this complexity by deriving an approximation of the MSSP that enables the planning problem to be solved using wSAA, kERM, and a novel Optimization Prediction approach. A numerical evaluation shows that wSAA leads to the best performance in this particular case. The solution method developed in this article builds a foundation for solving queuing-type planning problems using prescriptive analytics approaches, so it bridges the “worlds” of queuing theory and prescriptive analytics.
The third article, “Explainable Subgradient Tree Boosting for Prescriptive Analytics in Operations Management” proposes a novel prescriptive analytics approach to solve the two capacity planning problems studied in the first and second articles that allows decision-makers to derive explanations for prescribed decisions: Subgradient Tree Boosting (STB). STB combines the machine learning method Gradient Boosting with SAA and relies on subgradients because the cost function of OR planning problems often cannot be differentiated. A comprehensive numerical analysis suggests that STB can lead to a prescription performance that is comparable to that of wSAA and kERM. The explainability of STB prescriptions is demonstrated by breaking exemplary decisions down into the impacts of individual features. The novel STB approach is an attractive choice not only because of its prescription performance, but also because of the explainability that helps decision-makers understand the causality behind the prescriptions.
The results presented in these three articles demonstrate that using prescriptive analytics approaches, such as wSAA, kERM, and STB, to solve complex planning problems can lead to significantly better decisions compared to traditional approaches that neglect feature data or rely on a parametric distribution estimation. / Digitalisierung und künstliche Intelligenz führen zu enormen Veränderungen in nahezu allen Bereichen von Wirtschaft und Gesellschaft. Grundlegend für diese Veränderungen ist die Technologie des maschinellen Lernens (ML), ermöglicht durch ein Zusammenspiel großer Datenmengen, geeigneter Algorithmen und ausreichender Rechenleistung. Diese Technologie bildet die Basis für die Entwicklung neuartiger Ansätze zur Lösung klassischer Planungsprobleme des Operations Research (OR): Präskriptive Ansätze integrieren Methoden des ML und Optimierungsverfahren des OR mit dem Ziel, Lösungen für Planungsprobleme direkt aus historischen Observationen von Nachfrage und Features (erklärenden Variablen) abzuleiten. Diese neuartigen Lösungsansätze bieten ein enormes Potential zur Verbesserung von Planungsentscheidungen, wie erste numerische Analysen mit historischen Daten gezeigt haben, und begründen damit ein neues Forschungsfeld innerhalb des OR.
In ersten Beiträgen zu diesem neuen Forschungsfeld wurden präskriptive Verfahren für verhältnismäßig einfache Planungsprobleme aus dem Bereich des Lagerbestandsmanagements entwickelt. Häufig weisen Planungsprobleme aber eine deutlich höhere Komplexität auf, und viele dieser komplexen Planungsprobleme gehören zum Bereich der Kapazitätsplanung. Daher ist die Entwicklung präskriptiver Ansätze zur Lösung komplexer Probleme im Kapazitätsmanagement das Ziel dieser Dissertation. In drei inhaltlich abgeschlossenen Teilen werden neuartige präskriptive Ansätze konzipiert und auf realistische Kapazitätsplanungsprobleme angewendet.
Im ersten Artikel, „Prescriptive Analytics for Flexible Capacity Management”, werden zwei präskriptive Verfahren entwickelt, und zwar weighted Sample Average Approximation (wSAA) und kernelized Empirical Risk Minimization (kERM), um ein komplexes, zweistufiges stochastisches Kapazitätsplanungsproblem zu lösen: Ein Logistikdienstleister sortiert täglich eintreffende Sendungen auf drei Sortierlinien, für die die wöchentliche Mitarbeiterkapazität geplant werden muss. Dieser Artikel ist der erste Beitrag, in dem ein kERM-Verfahren zur direkten Lösung eines komplexen Planungsproblems mit matrixwertiger Nachfrage und vektorwertiger Entscheidung entwickelt, eine Obergrenze für die erwarteten Kosten für nichtlineare, kernelbasierte Funktionen abgeleitet und die Universal Approximation Property bei Nutzung spezieller Kernelfunktionen gezeigt wird. Die Ergebnisse der numerischen Studie demonstrieren, dass präskriptive Verfahren im Vergleich mit klassischen Lösungsverfahren zu signifikant besseren Entscheidungen führen können und ihre Entscheidungsqualität bei Variation der exogenen Kostenparameter deutlich robuster ist.
Im zweiten Artikel, „Prescriptive Analytics for a Multi-Shift Staffing Problem”, werden wSAA und kERM auf ein Planungsproblem der klassischen Warteschlangentheorie angewendet: Ein Dienstleister erhält über den Tag verteilt Aufträge, deren Anzahl und Zeitpunkt des Eintreffens unsicher sind, und muss die Mitarbeiterkapazität für zwei Schichten planen. Dieses Planungsproblem ist komplexer als die bisher mit präskriptiven Ansätzen gelösten Probleme: Auftragseingang und Bearbeitung werden als Wartesystem modelliert und die Nachfrage innerhalb einer Schicht folgt einem nicht stationären Prozess. Diese Komplexität wird mit zwei Näherungsmethoden bewältigt, sodass das Planungsproblem mit wSAA und kERM sowie dem neu entwickelten Optimization-Prediction-Verfahren gelöst werden kann. Die in diesem Artikel entwickelte Methode legt den Grundstein zur Lösung komplexer Warteschlangenmodelle mit präskriptiven Verfahren und schafft damit eine Verbindung zwischen den „Welten“ der Warteschlangentheorie und der präskriptiven Verfahren.
Im dritten Artikel, „Explainable Subgradient Tree Boosting for Prescriptive Analytics in Operations Management”, wird ein neues präskriptives Verfahren zur Lösung der Planungsprobleme der ersten beiden Artikel entwickelt, das insbesondere durch die Erklärbarkeit der Entscheidungen attraktiv ist: Subgradient Tree Boosting (STB). Es kombiniert das erfolgreiche Gradient-Boosting-Verfahren aus dem ML mit SAA und verwendet Subgradienten, da die Zielfunktion von OR-Planungsproblemen häufig nicht differenzierbar ist. Die numerische Analyse zeigt, dass STB zu einer vergleichbaren Entscheidungsqualität wie wSAA und kERM führen kann, und dass die Kapazitätsentscheidungen in Beiträge einzelner Features zerlegt und damit erklärt werden können. Das STB-Verfahren ist damit nicht nur aufgrund seiner Entscheidungsqualität attraktiv für Entscheidungsträger, sondern insbesondere auch durch die inhärente Erklärbarkeit.
Die in diesen drei Artikeln präsentierten Ergebnisse zeigen, dass die Nutzung präskriptiver Verfahren, wie wSAA, kERM und STB, bei der Lösung komplexer Planungsprobleme zu deutlich besseren Ergebnissen führen kann als der Einsatz klassischer Methoden, die Feature-Daten vernachlässigen oder auf einer parametrischen Verteilungsschätzung basieren.
|
69 |
Model Learning for Performance Prediction of Cloud-native Microservice Applications / Lernen von Modellen für die Performancevorhersage von Cloud-nativen Microservice AnwendungenGrohmann, Johannes Sebastian January 2022 (has links) (PDF)
One consequence of the recent coronavirus pandemic is increased demand and use of online services around the globe. At the same time, performance requirements for modern technologies are becoming more stringent as users become accustomed to higher standards. These increased performance and availability requirements, coupled with the unpredictable usage growth, are driving an increasing proportion of applications to run on public cloud platforms as they promise better scalability and reliability.
With data centers already responsible for about one percent of the world's power consumption, optimizing resource usage is of paramount importance. Simultaneously, meeting the increasing and changing resource and performance requirements is only possible by optimizing resource management without introducing additional overhead. This requires the research and development of new modeling approaches to understand the behavior of running applications with minimal information.
However, the emergence of modern software paradigms makes it increasingly difficult to derive such models and renders previous performance modeling techniques infeasible. Modern cloud applications are often deployed as a collection of fine-grained and interconnected components called microservices. Microservice architectures offer massive benefits but also have broad implications for the performance characteristics of the respective systems. In addition, the microservices paradigm is typically paired with a DevOps culture, resulting in frequent application and deployment changes. Such applications are often referred to as cloud-native applications. In summary, the increasing use of ever-changing cloud-hosted microservice applications introduces a number of unique challenges for modeling the performance of modern applications. These include the amount, type, and structure of monitoring data, frequent behavioral changes, or infrastructure variabilities. This violates common assumptions of the state of the art and opens a research gap for our work.
In this thesis, we present five techniques for automated learning of performance models for cloud-native software systems. We achieve this by combining machine learning with traditional performance modeling techniques. Unlike previous work, our focus is on cloud-hosted and continuously evolving microservice architectures, so-called cloud-native applications. Therefore, our contributions aim to solve the above challenges to deliver automated performance models with minimal computational overhead and no manual intervention. Depending on the cloud computing model, privacy agreements, or monitoring capabilities of each platform, we identify different scenarios where performance modeling, prediction, and optimization techniques can provide great benefits. Specifically, the contributions of this thesis are as follows:
Monitorless: Application-agnostic prediction of performance degradations.
To manage application performance with only platform-level monitoring, we propose Monitorless, the first truly application-independent approach to detecting performance degradation. We use machine learning to bridge the gap between platform-level monitoring and application-specific measurements, eliminating the need for application-level monitoring. Monitorless creates a single and holistic resource saturation model that can be used for heterogeneous and untrained applications. Results show that Monitorless infers resource-based performance degradation with 97% accuracy. Moreover, it can achieve similar performance to typical autoscaling solutions, despite using less monitoring information.
SuanMing: Predicting performance degradation using tracing.
We introduce SuanMing to mitigate performance issues before they impact the user experience. This contribution is applied in scenarios where tracing tools enable application-level monitoring. SuanMing predicts explainable causes of expected performance degradations and prevents performance degradations before they occur. Evaluation results show that SuanMing can predict and pinpoint future performance degradations with an accuracy of over 90%.
SARDE: Continuous and autonomous estimation of resource demands.
We present SARDE to learn application models for highly variable application deployments. This contribution focuses on the continuous estimation of application resource demands, a key parameter of performance models. SARDE represents an autonomous ensemble estimation technique. It dynamically and continuously optimizes, selects, and executes an ensemble of approaches to estimate resource demands in response to changes in the application or its environment. Through continuous online adaptation, SARDE efficiently achieves an average resource demand estimation error of 15.96% in our evaluation.
DepIC: Learning parametric dependencies from monitoring data.
DepIC utilizes feature selection techniques in combination with an ensemble regression approach to automatically identify and characterize parametric dependencies. Although parametric dependencies can massively improve the accuracy of performance models, DepIC is the first approach to automatically learn such parametric dependencies from passive monitoring data streams. Our evaluation shows that DepIC achieves 91.7% precision in identifying dependencies and reduces the characterization prediction error by 30% compared to the best individual approach.
Baloo: Modeling the configuration space of databases.
To study the impact of different configurations within distributed DBMSs, we introduce Baloo. Our last contribution models the configuration space of databases considering measurement variabilities in the cloud. More specifically, Baloo dynamically estimates the required benchmarking measurements and automatically builds a configuration space model of a given DBMS. Our evaluation of Baloo on a dataset consisting of 900 configuration points shows that the framework achieves a prediction error of less than 11% while saving up to 80% of the measurement effort.
Although the contributions themselves are orthogonally aligned, taken together they provide a holistic approach to performance management of modern cloud-native microservice applications.
Our contributions are a significant step forward as they specifically target novel and cloud-native software development and operation paradigms, surpassing the capabilities and limitations of previous approaches.
In addition, the research presented in this paper also has a significant impact on the industry, as the contributions were developed in collaboration with research teams from Nokia Bell Labs, Huawei, and Google.
Overall, our solutions open up new possibilities for managing and optimizing cloud applications and improve cost and energy efficiency. / Eine der Folgen der weltweiten Coronavirus-Pandemie ist die erhöhte Nachfrage und Nutzung von Onlinediensten in der gesamten Welt. Gleichzeitig werden die Performanceanforderungen an moderne Technologien immer strenger, da die Benutzer an höhere Standards gewöhnt sind. Diese gestiegenen Performance- und Verfügbarkeitsanforderungen, gepaart mit dem unvorhersehbaren Nutzerwachstum, führen dazu, dass ein zunehmender Anteil der Anwendungen auf Public-Cloud-Plattformen läuft, da diese eine bessere Skalierbarkeit und Zuverlässigkeit versprechen.
Da Rechenzentren bereits heute für etwa ein Prozent des weltweiten Stromverbrauchs verantwortlich sind, ist es von größter Bedeutung, den Ressourceneinsatz zu optimieren. Die gleichzeitige Erfüllung der steigenden und variierenden Ressourcen- und Performanceanforderungen ist nur durch eine Optimierung des Ressourcenmanagements möglich, ohne gleichzeitig zusätzlichen Overhead einzuführen. Dies erfordert die Erforschung und Entwicklung neuer Modellierungsansätze, um das Verhalten der laufenden Anwendungen mit möglichst wenigen Informationen zu verstehen.
Das Aufkommen moderner Softwareparadigmen macht es jedoch zunehmend schwieriger, solche Modelle zu lernen und macht bisherige Modellierungstechniken unbrauchbar. Moderne Cloud-Anwendungen werden oft als eine Sammlung von feingranularen, miteinander verbundenen Komponenten, sogenannten Microservices, bereitgestellt. Microservicearchitekturen bieten massive Vorteile, haben aber auch weitreichende Auswirkungen auf die Performance der jeweiligen Systeme. Darüber hinaus wird das Microserviceparadigma häufig in Verbindung mit einer DevOps-Kultur eingesetzt, was zu häufigen Änderungen am Deployment oder der Anwendung selbst führt. Solche Anwendungen werden auch als cloud-native Anwendungen bezeichnet. Zusammenfassend lässt sich sagen, dass der zunehmende Einsatz von sich ständig ändernden und in der Cloud gehosteten Microservice-Anwendungen eine Reihe von besonderen Herausforderungen für die Modellierung der Performance von modernen Anwendungen mit sich bringt. Darunter sind die Menge, Art und Struktur der Monitoringdaten, häufige Änderungen am Verhalten oder Veränderungen der zugrundeliegenden Infrastruktur. Das verstößt gegen gängige Annahmen des aktuellen Stands der Technik und eröffnet eine Forschungslücke für unsere Arbeit.
In der vorliegenden Arbeit stellen wir fünf Techniken zum automatisierten Lernen von Performancemodellen für cloud-native Softwaresysteme vor. Wir erreichen dies durch die Kombination von maschinellem Lernen mit traditionellen Performance-Modellierungstechniken. Im Gegensatz zu früheren Arbeiten liegt unser Fokus auf in der Cloud gehosteten und sich ständig weiterentwickelnden Microservice-Architekturen, sogenannten cloud-nativen Anwendungen. Daher zielen unsere Beiträge darauf ab, die oben genannten Herausforderungen zu lösen, um automatisierte Performancemodelle mit minimalem Rechenaufwand und ohne manuellen Aufwand zu erzeugen. Abhängig vom jeweiligen Cloudmodell, eventuellen Datenschutzvereinbarungen oder den Möglichkeiten des Monitoringsframworks der jeweiligen Plattform, identifizieren wir verschiedene Anwendungsszenarien, in denen Techniken zur Modellierung, Vorhersage und Optimierung der Performance große Vorteile bieten können. Im Einzelnen sind die Beiträge dieser Arbeit wie folgt:
Monitorless: Anwendungsagnostische Vorhersage von Performanceverschlechterung.
Um die Performance einer Anwendung ausschliesslich mittels Monitoring auf Plattformebene zu verwalten, schlagen wir Monitorless vor, den ersten wirklich anwendungsunabhängigen Ansatz zur Erkennung von Performanceverschlechterungen. Wir verwenden maschinelles Lernen, um die Lücke zwischen Monitoring auf Plattformebene und anwendungsspezifischen Messungen zu schließen, wodurch das Monitoring auf Anwendungsebene überflüssig wird. Monitorless erstellt ein einziges und ganzheitliches Modell der Ressourcensättigung, das auch für heterogene und nicht im Training enthaltene Anwendungen verwendet werden kann. Die Ergebnisse zeigen, dass Monitorless ressourcenbasierte Performanceverschlechterungen mit einer Genauigkeit von 97% erkennt. Darüber hinaus zeigt es ähnliche Leistungen wie typische Autoscalinglösungen, obwohl es weniger Monitoringinformationen verwendet.
SuanMing: Vorhersage von Performanceverschlechterung mithilfe von Tracing.
Wir führen SuanMing ein, um Performanceprobleme zu entschärfen, bevor sie sich auf das Benutzererlebnis auswirken. Dieser Beitrag wird in Szenarien angewendet, in denen Tracing-Tools das Monitoring auf Anwendungsebene ermöglichen. SuanMing sagt erklärbare Ursachen für erwartete Performanceeinbußen voraus und verhindert diese, bevor sie auftreten. Evaluationsergebnisse zeigen, dass SuanMing zukünftige Performanceeinbußen mit einer Genauigkeit von über 90% vorhersagen und lokalisieren kann.
SARDE: Kontinuierliche und autonome Schätzung des Ressourcenbedarfs.
Wir stellen SARDE vor, um Performancemodelle für hochvariable Anwendungen zu lernen. Dieser Beitrag konzentriert sich auf die kontinuierliche Schätzung des Ressourcenbedarfs von Anwendungen, einem wichtigen Parameter in Performancemodellen. SARDE ist ein autonomes Ensembleverfahren zum Schätzen. Es wählt dynamisch und kontinuierlich aus einem Ensemble von Ansätzen, optimiiert diese, und führt sie aus, um den Ressourcenbedarf als Reaktion auf Änderungen in der Anwendung oder ihrer Umgebung zu schätzen. Durch kontinuierliche Online-Anpassung erreicht SARDE in unserer Evaluation effizient einen durchschnittlichen Fehler bei der Schätzung des Ressourcenbedarfs von 15,96%.
DepIC: Lernen parametrischer Abhängigkeiten aus Monitoringdaten.
DepIC nutzt Techniken zu Featureauswahl in Kombination mit einem Ensemble-Regressionsansatz, um parametrische Abhängigkeiten automatisch zu identifizieren und zu charakterisieren. Obwohl parametrische Abhängigkeiten die Genauigkeit von Performancemodellen deutlich verbessern können, ist DepIC der erste Ansatz, der solche parametrischen Abhängigkeiten automatisch aus passiven Monitoringdatenströmen lernt. Unsere Evaluation zeigt, dass DepIC eine Genauigkeit von 91,7% bei der Identifizierung von Abhängigkeiten erreicht und den Fehler bei der Charakterisierungsvorhersage um 30% im Vergleich zum besten individuellen Ansatz reduziert.
Baloo: Modellierung des Konfigurationsraums von Datenbanken.
Um die Auswirkungen verschiedener Konfigurationseinstellungen in verteilten Datenbankmanagementsystemen zu untersuchen, führen wir Baloo ein. Unser letzter Beitrag modelliert den Konfigurationsraum von Datenbanken unter Berücksichtigung der Messungsvariabilitäten der Cloud. Genauer gesagt, schätzt Baloo dynamisch die erforderliche Anzahl der Benchmarkmessungen und baut automatisch ein Konfigurationsraummodell eines gegebenen Datenbankmanagementsystems auf. Unsere Evaluation von Baloo auf einem aus 900 Konfigurationspunkten bestehenden Datensatz zeigt, dass das Framework einen Vorhersagefehler von weniger als 11% erreicht und gleichzeitig bis zu 80% des Messaufwands einspart.
Obwohl die Beiträge an sich orthogonal zueinander ausgerichtet sind, bilden sie zusammengenommen einen ganzheitlichen Ansatz für das Performancemanagement von modernen cloud-nativen Microservice-Anwendungen. Unsere Beiträge sind ein bedeutender Schritt, da sie speziell auf neuartige und cloud-native Paradigmen für Softwareentwicklung und Betrieb abzielen, sowie die Fähigkeiten bisheriger Ansätze übertreffen. Darüber hinaus hat die in dieser Arbeit vorgestellte Forschung auch einen bedeutenden Einfluss auf die Industrie, da die Beiträge in Zusammenarbeit mit Forschungsteams von Nokia Bell Labs, Huawei und Google entwickelt wurden. Insgesamt eröffnen unsere Lösungen neue Möglichkeiten für die Verwaltung und Optimierung von Cloudanwendungen und verbessern so die Kosten- und Energieeffizienz.
|
70 |
Design and Evaluation of Data-Driven Enterprise Process Monitoring Systems / Design und Evaluation von datengetriebenen Prozess Überwachungssystemen in UnternehmenOberdorf, Felix January 2022 (has links) (PDF)
Increasing global competition forces organizations to improve their processes to gain a competitive advantage. In the manufacturing sector, this is facilitated through tremendous digital transformation. Fundamental components in such digitalized environments are process-aware information systems that record the execution of business processes, assist in process automation, and unlock the potential to analyze processes. However, most enterprise information systems focus on informational aspects, process automation, or data collection but do not tap into predictive or prescriptive analytics to foster data-driven decision-making. Therefore, this dissertation is set out to investigate the design of analytics-enabled information systems in five independent parts, which step-wise introduce analytics capabilities and assess potential opportunities for process improvement in real-world scenarios.
To set up and extend analytics-enabled information systems, an essential prerequisite is identifying success factors, which we identify in the context of process mining as a descriptive analytics technique. We combine an established process mining framework and a success model to provide a structured approach for assessing success factors and identifying challenges, motivations, and perceived business value of process mining from employees across organizations as well as process mining experts and consultants. We extend the existing success model and provide lessons for business value generation through process mining based on the derived findings. To assist the realization of process mining enabled business value, we design an artifact for context-aware process mining. The artifact combines standard process logs with additional context information to assist the automated identification of process realization paths associated with specific context events. Yet, realizing business value is a challenging task, as transforming processes based on informational insights is time-consuming.
To overcome this, we showcase the development of a predictive process monitoring system for disruption handling in a production environment. The system leverages state-of-the-art machine learning algorithms for disruption type classification and duration prediction. It combines the algorithms with additional organizational data sources and a simple assignment procedure to assist the disruption handling process. The design of such a system and analytics models is a challenging task, which we address by engineering a five-phase method for predictive end-to-end enterprise process network monitoring leveraging multi-headed deep neural networks. The method facilitates the integration of heterogeneous data sources through dedicated neural network input heads, which are concatenated for a prediction. An evaluation based on a real-world use-case highlights the superior performance of the resulting multi-headed network.
Even the improved model performance provides no perfect results, and thus decisions about assigning agents to solve disruptions have to be made under uncertainty. Mathematical models can assist here, but due to complex real-world conditions, the number of potential scenarios massively increases and limits the solution of assignment models. To overcome this and tap into the potential of prescriptive process monitoring systems, we set out a data-driven approximate dynamic stochastic programming approach, which incorporates multiple uncertainties for an assignment decision. The resulting model has significant performance improvement and ultimately highlights the particular importance of analytics-enabled information systems for organizational process improvement. / Der zunehmende globale Wettbewerb zwingt Unternehmen zur Verbesserung ihrer Prozesse, um sich dadurch einen Wettbewerbsvorteil zu verschaffen. In der Fertigungsindustrie wird das durch die die digitale Transformation unterstützt. Grundlegende Komponenten in den entstehenden digitalisierten Umgebungen sind prozessorientierte Informationssysteme, die die Ausführung von Geschäftsprozessen aufzeichnen, bei der Prozessautomatisierung unterstützen und wiederum Potenzial zur Prozessanalyse freisetzen. Die meisten Informationssysteme in Unternehmen konzentrieren sich jedoch auf die Anzeige von Informationen, Prozessautomatisierung oder Datenerfassung, nutzen aber keine predictive analytics oder prescriptive analytics, um datengetriebene Entscheidungen zu unterstützen. Daher wird in dieser Dissertation der Aufbau von analytics-enabled Informationssystemen in fünf unabhängigen Teilen untersucht, die schrittweise analytische Methoden einführen und potenzielle Möglichkeiten zur Prozessverbesserung in realen Szenarien bewerten.
Eine wesentliche Voraussetzung für den Auf- und Ausbau von analytics-enabled Informationssystemen ist die Identifikation von Erfolgsfaktoren, die wir im Kontext von Process Mining als deskriptive Methode untersuchen. Wir kombinieren einen etablierten Process Mining Framework und ein Process Mining Erfolgsmodell, um einen strukturierten Ansatz zur Bewertung von Erfolgsfaktoren zu ermöglichen, den wir aufbauend zur Identifizierung von Herausforderungen, Motivationen und des wahrgenommenen Mehrwerts (engl. Business Value) von Process Mining durch Mitarbeiter in Organisationen und Process Mining Experten nutzen. Auf Grundlage der gewonnenen Erkenntnisse erweitern wir das bestehende Erfolgsmodell und leiten Implikationen für die Generierung von Business Value durch Process Mining ab. Um die Realisierung des durch Process Mining ermöglichten Business Value zu unterstützen, entwickeln wir ein Artefakt für kontextbezogenes Process Mining. Das Artefakt kombiniert standard Prozessdaten mit zusätzlichen Kontextinformationen, um die automatische Identifizierung von Prozesspfaden, die mit den Kontextereignissen in Verbindung gebracht werden, zu unterstützen. Die entsprechende Realisierung ist jedoch eine herausfordernde Aufgabe, da die Transformation von Prozessen auf der Grundlage von Informationserkenntnissen zeitaufwendig ist.
Um dies zu überwinden, stellen wir die Entwicklung eines predictive process monitoring Systems zur Automatisierung des Störungsmanagements in einer Produktionsumgebung vor. Das System nutzt etablierte Algorithmen des maschinellen Lernens zur Klassifizierung von Störungsarten und zur Vorhersage der Störungsdauer. Es kombiniert die Algorithmen mit zusätzlichen Datenquellen und einem einfachen Zuweisungsverfahren, um den Prozess der Störungsbearbeitung zu unterstützen. Die Entwicklung eines solchen Systems und entsprechender Modelle ist eine anspruchsvolle Aufgabe, die wir durch die Entwicklung einer Fünf-Phasen-Methode für predictive end-to-end process monitoring von Unternehmensprozessen unter Verwendung von multi-headed neural networks adressieren. Die Methode erleichtert die Integration heterogener Datenquellen durch dedizierte Modelle, die für eine Vorhersage kombiniert werden. Die Evaluation eines realen Anwendungsfalls unterstreicht die Kompetitivität des eines aus der entwickelten Methode resultierenden Modells.
Allerdings sind auch die Ergebnisse des verbesserten Modells nicht perfekt. Somit muss die Entscheidung über die Zuweisung von Agenten zur Lösung von Störungen unter Unsicherheit getroffen werden. Dazu können zwar mathematische Modelle genutzt werden, allerdings steigt die Anzahl der möglichen Szenarien durch komplexe reale Bedingungen stark an und limitiert die Lösung mathematischer Modelle. Um dies zu überwinden und das Potenzial eines prescriptive process monitoring Systems zu beleuchten, haben wir einen datengetriebenen Ansatz zur Approximation eines dynamischen stochastischen Problems entwickelt, der mehrere Unsicherheiten bei der Zuweisung der Agenten berücksichtigt. Das resultierende Modell hat eine signifikant bessere Leistung und unterstreicht letztlich die besondere Bedeutung von analytics-enabled Informationssystemen für die Verbesserung von Organisationsprozessen.
|
Page generated in 0.1005 seconds