• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface mass balance of Arctic glaciers: Climate influences and modeling approaches

Gardner, Alex Sandy 11 1900 (has links)
Land ice is losing mass to the worlds oceans at an accelerated rate. The worlds glaciers contain much less ice than the ice sheets but contribute equally to eustatic sea level rise and are expected to continue to do so over the coming centuries if global temperatures continue to rise. It is therefore important to characterize the mass balance of these glaciers and its relationship to climate trends and variability. In the Canadian High Arctic, analysis of long-term surface mass balance records shows a shift to more negative mass balances after 1987 and is coincident with a change in the mean location of the July circumpolar vortex, a mid-troposphere cyclonic feature known to have a strong influence on Arctic summer climate. Since 1987 the occurrence of July vortices centered in the Eastern Hemisphere have increased significantly. This change is associated with an increased frequency of tropospheric ridging over the Canadian High Arctic, higher surface air temperatures, and more negative glacier mass balance. However, regional scale mass balance modeling is needed to determine whether or not the long-term mass balance measurements in this region accurately reflect the mass balance of the entire Canadian High Arctic. The Canadian High Arctic is characterized by high relief and complex terrain that result in steep horizontal gradients in surface mass balance, which can only be resolved if models are run at high spatial resolutions. For such runs, models often require input fields such as air temperature that are derived by downscaling of output from climate models or reanalyses. Downscaling is often performed using a specified relationship between temperature and elevation (a lapse rate). Although a constant lapse rate is often assumed, this is not well justified by observations. To improve upon this assumption, near-surface temperature lapse rates during the summer ablation season were derived from surface measurements on 4 Arctic glaciers. Near-surface lapse rates vary systematically with free-air temperatures and are less steep than the free-air lapse rates that have often been used in mass balance modeling. Available observations were used to derive a new variable temperature downscaling method based on temperature dependent daily lapse rates. This method was implemented in a temperature index mass balance model, and results were compared with those derived from a constant linear lapse rate. Compared with other approaches, model estimates of surface mass balance fit observations much better when variable, temperature dependent lapse rates are used. To better account for glacier-climate feedbacks within mass balance models, more physically explicit representations of snow and ice processes must be used. Since absorption of shortwave radiation is often the single largest source of energy for melt, one of the most important parameters to model correctly is surface albedo. To move beyond the limitations of empirical snow and ice albedo parameterizations often used in surface mass balance models, a computationally simple, theoretically-based parameterization for snow and ice albedo was developed. Unlike previous parameterizations, it provides a single set of equations for the estimation of both snow and ice albedo. The parameterization also produces accurate results for a much wider range of snow, ice, and atmospheric conditions.
2

Surface mass balance of Arctic glaciers: Climate influences and modeling approaches

Gardner, Alex Sandy Unknown Date
No description available.
3

Form and Function of Coastal Areas

Lindgren, Dan January 2011 (has links)
Coastal waters have high biological productivity and provide goods and services with a high monetary value. Coasts are used by many different stakeholders and are often densely populated. These factors put coastal ecosystems under heavy environmental pressure and place high demands on politicians and coastal managers, who need suitable tools to facilitate decision-making. Geographic information systems and predictive mass balance models are two such tools, and the form of coastal areas (morphometry) is an important component of both tools in coastal management. In this thesis it was shown that the form and function of coastal areas are interrelated in a number of ways. Morphometric parameters can be used to identify coastal areas that are more sensitive to pollution, or that potentially have higher ecological value; and morphometric analysis is an essential part of mass balance modeling. New ways of using morphometry for estimation of benthic production potential were presented and tested. It was shown that there are great differences in benthic production potential among Swedish coastal areas and regions. Different morphometric descriptors of openness were developed and tested; these can be used in habitat mapping or for prediction of sediment bottom types. Significant correlation was found between the morphometric properties of coastal areas, the proportion of accumulation bottom areas and the critical depth. Statistical models for prediction of accumulation bottom areas and critical depth were also obtained using multiple regression. Large differences were found in empirical values of bottom dynamic conditions from two different sources. Algorithms from a well tested mass balance model were adapted for modeling salt in the Baltic Sea. This enabled calculation of water exchange between five basins on a monthly time scale, which can be of use in future modeling studies. The study included morphometric analysis for structuring the model and for calculation of input data.
4

Evaluating the use of dose-response relationships based on in vitro data in establishing acceptable exposure levels in humans

Bloch, Sherri 09 1900 (has links)
Avec plus de 350 000 produits chimiques utilisés et de nouveaux arrivant sur le marché chaque année, des outils rapides et à coûts réduits sont nécessaires pour l'étude de ces produits. L’évaluation des risques pour ces produits est généralement faite à partir d’études animales, mais celles-ci présentent plusieurs limitations. Par exemple, évaluer le potentiel cancérogène d’une substance prendre jusqu'à trois ans et coûter six millions de dollars. En outre, il a été démontré que les modèles animaux n'ont qu'un faible pouvoir prédictif par rapport aux effets chez l’humain. Pour surmonter ces obstacles, on assiste actuellement à un mouvement mondial en faveur du développement et de l'acceptation de nouvelles approches méthodologiques (NAM) pour la priorisation des produits chimiques et l'évaluation des risques. Notre objectif était d’élaborer et d'évaluer une nouvelle approche d’extrapolation in vitro à in vivo (IVIVE) pour établir des niveaux d'exposition acceptables chez l'homme en combinant des des études in vitro et des outils de modélisation toxicologique. À cette fin, nous avons développé et évalué un outil informatique utilisé dans l'approche IVIVE et mené des études de cas sur deux produits chimiques pour lesquels étaient disponibles des données in vitro, des modèles d'exposition, et des études épidémiologiques associant l’exposition à des effets néfastes chez l’humain. Dans le premier article, nous avons développé et évalué un modèle de bilan de masse dynamique (IV-MBM DP v1.0) pour estimer les concentrations intracellulaires au cours d'expériences in vitro avec administration répétée, incluant une description du transport facilité. Pour évaluer la précision du modèle, nous avons paramétré et appliqué le modèle à des scénarios de dose unique et de doses répétées, et évalué les concentrations estimées aux données empiriques. En outre, nous avons simulé des scénarios de dosage répété pour des produits chimiques organiques représentant une diversité de caractéristiques physico-chimiques, et nous avons comparé leur dispersion dans le système au fil du temps. Dans l'ensemble, pour les scénarios de dosage unique et répété, la concordance entre les données simulées et expérimentales a illustré le pouvoir prédictif du modèle. i Dans les deuxième et troisième articles, nous nous sommes concentrés sur l'utilisation et l'évaluation de notre nouvelle approche IVIVE en faisant deux études de cas impliquant l'exposition placentaire et lactationnelle à des polluants organiques persistants. La première étape de notre méthodologie a été la sélection d'un point de départ à partir d'une étude in vitro utilisant des cellules humaines. Ensuite, nous avons appliqué la modélisation benchmark dose pour obtenir la concentration associée à un changement relatif de 5% de la réponse par rapport au contrôle. Nous avons ensuite appliqué la modélisation de de bilan de masse pour déterminer la concentration cellulaire pour un point de départ conduisant à un changement de réponse de 5%. Un modèle toxicocinétique pour le transfert placentaire et par l’allaitement a ensuite été utilisé pour calculer la dose équivalente administrée et la concentration plasmatique associée, et des facteurs d'incertitude (variabilité interindividuelle (10) et sous-chronique à chronique (10)) ont été appliqués pour calculer les apports quotidiens tolérables et les équivalents de biosurveillance. Les équivalents de biosurveillance ont été comparés aux concentrations dans le sang de la mère et du cordon ombilical mesurées dans les études épidémiologiques. Nos études de cas portaient sur la neurotoxicité développementale du 2,2',4,4'-tétrabromodiphényléther (BDE-47) et sur l'obésogénicité du dichlorodiphényldichloroéthylène (p,p'-DDE). Pour les deux études, les apports quotidiens tolérables calculés en tenant compte des facteurs d’incertitude étaient plus faibles que les valeurs toxicologiques de référence déterminées sur la base d’études animales. En outre, les deux études de cas ont produit des équivalents de biosurveillance se situant dans la gamme des concentrations maternelles et du cordon ombilical mesurées dans les études épidémiologiques. Dans l'ensemble, l'évaluation de notre modèle de bilan de masse, ainsi que les valeurs conservatrices générées par l'approche IVIVE dans nos études de cas, renforcent la confiance dans les NAM, ce qui est essentiel pour leur adoption future par les organismes de réglementation. / With over 350,000 chemicals in use and more entering the market every year, cost-effective and time-efficient tools are necessary for the investigation of these products. Whole animal models are traditionally used and accepted by regulatory agencies; however, animal models carry multiple limitations. Specifically, animal models may take up to three years and six million dollars to investigate the carcinogenicity of a compound. Additionally, animal models have been shown to have poor predictive power for human safety. To overcome these obstacles, a global movement toward the development and acceptance of new alternative methods (NAMs) for chemical prioritization and risk assessment is taking place. Our objective was to develop and evaluate a novel in vitro to in vivo (IVIVE) approach to establish acceptable exposure levels in humans by combining novel in vitro and biological/computational modeling technologies for chemical safety assessment. To this end, we tested and evaluated a computational tool utilized in the IVIVE approach, and conducted proof-of-concept studies on two case chemicals with publicly available in vitro data, exposure models, and epidemiological studies demonstrating adverse health effects. In the first paper, we aimed to develop and evaluate a dynamic partitioning mass-balance model (IV-MBM DP v1.0) to estimate intracellular concentrations during in vitro experiments of repeat dosing, and incorporate facilitated transport into the model. To evaluate the model accuracy, we parametrized and applied the model to single dose and repeat dosing scenarios and assessed the output against empirical data. In addition, we simulated repeat dosing scenarios for organic chemicals with different properties and compared their dispersion within the system over time. Overall, for single and repeat dosing scenarios, concordance between simulated and experimental data illustrated the predictive power of the model. In the second and third papers, we focused on the use and evaluation of our novel IVIVE approach through case studies involving placental and lactational exposure to persistent organic pollutants. The first step of our methodology was the selection of a point of departure from an in vitro study utilizing human cells. Next, we applied benchmark dose modeling to obtain the nominal iv concentration at a 5% relative change in response from control. We subsequently applied mass- balance modeling to determine the cellular concentration for the POD leading to a 5% change in response. A toxicokinetic model for placental transfer and lactation was then used to calculate the administered equivalent dose and associated maternal and cord plasma concentration, and uncertainty factors (interindividual variability (10) and subchronic to chronic (10)) were applied to calculate tolerable daily intakes and biomonitoring equivalents. Biomonitoring equivalents were compared to concentrations in maternal and cord blood measured in epidemiological studies. Our case studies were on 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) developmental neurotoxicity and dichlorodiphenyldichloroethylene (p,p’-DDE) obesogenicity. For both studies, calculated tolerable daily intakes accounting for uncertainty factors were more conservative than the reference doses determined through the use of whole animal models. Moreover, both case studies produced biomonitoring equivalents within the range of maternal and cord levels measured in epidemiological studies. Overall, assessment of our IV-MBM DP v1.0 mass-balance model, as well as the demonstrated protective quality of the IVIVE approach in our case studies, enhances confidence in NAMs, which is essential for their future adoption by regulatory agencies.

Page generated in 0.0673 seconds