• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 102
  • 102
  • 50
  • 34
  • 25
  • 24
  • 18
  • 16
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Dynamic Atmospheres of Classical Cepheids: Studies of Atmospheric Extension, Mass Loss, and Shocks

Neilson, Hilding 19 February 2010 (has links)
In this dissertation, we develop new tools for the study of stellar atmospheres, pulsating stellar atmospheres and mass loss from pulsating stars. These tools provide new insights into the structure and evolution of stars and complement modern observational techniques such as optical interferometry and high resolution spectroscopy. In the first part, a new spherically symmetric version of the Atlas program is developed for modelling extended stellar atmospheres. The program is used to model interferometric observations from the literature and to study limb-darkening for stars with low gravity. It is determined that stellar limb-darkening can be used to constrain fundamental properties of stars. When this is coupled with interferometric or microlensing observations, stellar limb-darkening can predict the masses of isolated stars. The new SAtlas program is combined with the plane-parallel hydrodynamic program Hermes to develop a new spherically-symmetric radiative hydrodynamic program that models radial pulsation in the atmosphere of a star to depths including the pulsation-driving regions of the stars. Preliminary tests of this new program are discussed. In the second part, we study the recent observations of circumstellar envelopes surrounding Cepheids and develop a mass-loss hypothesis to explain their formation. The hypothesis is studied using a modified version of the Castor, Abbott, & Klein theory for radiative-driven winds to contain the effects of pulsation. In the theory, pulsation is found to be a driving mechanism that increases the mass-loss rates of Cepheids by up to four orders of magnitude. These mass-loss rates are large enough to explain the formation of the envelopes from dust forming in the wind at large distances from the surface of the star. The mass-loss rates are found to be plausible explanation for the Cepheid mass discrepancy. We also compute mass-loss rates from optical and infrared observations of Large Magellanic Cloud Cepheids from the infrared excess and find mass loss to be an important phenomena in these stars. The amount of infrared excess is found to potentially affect the structure of the infrared Leavitt law.
12

Dynamic reserve allocation in breeding birds

Rands, Sean Alexander January 2000 (has links)
No description available.
13

Pulsation and Mass Loss Across the H-R Diagram: From OB Stars to Cepheids to Red Supergiants

Neilson, Hilding R. 03 March 2014 (has links)
Both pulsation and mass loss are commonly observed in stars and are important ingredients for understanding stellar evolution and structure, especially for massive stars. There is a growing body of evidence that pulsation can also drive and enhance mass loss in massive stars and that pulsation-driven mass loss is important for stellar evolution. In this review, I will discuss recent advances in understanding pulsation-driven mass loss in massive main-sequence stars, classical Cepheids and red supergiants and present some challenges remaining.
14

Classical Cepheids Require Enhanced Mass Loss

Neilson, Hilding R., Langer, Norbert, Engle, Scott G., Guinan, Ed, Izzard, Robert 20 November 2012 (has links)
Measurements of rates of period change of Classical Cepheids probe stellar physics and evolution. Additionally, better understanding of Cepheid structure and evolution provides greater insight into their use as standard candles and tools for measuring the Hubble constant. Our recent study of the period change of the nearest Cepheid, Polaris, suggested that it is undergoing enhanced mass loss when compared to canonical stellar evolution model predictions. In this work, we expand the analysis to rates of period change measured for about 200 Galactic Cepheids and compare them to population synthesis models of Cepheids including convective core overshooting and enhanced mass loss. Rates of period change predicted from stellar evolution models without mass loss do not agree with observed rates, whereas including enhanced mass loss yields predicted rates in better agreement with observations. This is the first evidence that enhanced mass loss as suggested previously for Polaris and δ Cephei must be a ubiquitous property of Classical Cepheids.
15

Rapid non-destructive assessment of wood decay by near infrared spectroscopy

Green, Benny 01 May 2010 (has links)
The use of near infrared (NIR) spectroscopy for predicting levels of degradation in laboratory soil block tests was investigated. Calibrations were developed for mass loss, compression strength, and exposure period using data measured from the prior methods, and untreated and mathematically treated (multiplicative scatter correction and first and second derivative) NIR spectra from various spans of wavelengths by partial least squares regression. Strong correlations were obtained from each study conducted, while calibrations developed from NIR spectra from the cross-sectional face of southern yellow pine presented the strongest predictions. Of them, calibrations for mass loss resulted in the strongest predictions. Calibrations constructed from spectra obtained from the radial face of southern yellow pine also produced strong predictions, where the strongest model was for exposure period. While, calibrations developed for cottonwood presented the weakest statistics, the strongest calibration found was for exposure period.
16

RISING FROM THE ASHES: MID-INFRARED RE-BRIGHTENING OF THE IMPOSTOR SN 2010da IN NGC 300

Lau, Ryan M., Kasliwal, Mansi M., Bond, Howard E., Smith, Nathan, Fox, Ori D., Carlon, Robert, Cody, Ann Marie, Contreras, Carlos, Dykhoff, Devin, Gehrz, Robert, Hsiao, Eric, Jencson, Jacob, Khan, Rubab, Masci, Frank, Monard, L. A. G., Monson, Andrew J., Morrell, Nidia, Phillips, Mark, Ressler, Michael E. 18 October 2016 (has links)
We present multi-epoch mid-infrared (IR) photometry and the optical discovery observations of the "impostor" supernova (SN) 2010da in NGC. 300 using new and archival Spitzer Space Telescope images and ground-based observatories. The mid-infrared counterpart of SN. 2010da was detected as Spitzer Infrared Intensive Transient Survey (SPIRITS). 14bme in the SPIRITS, an ongoing systematic search for IR transients. Before erupting on 2010 May 24, the SN. 2010da progenitor exhibited a constant mid-IR flux at 3.6 and only a slight similar to 10% decrease at 4.5 mu m between 2003 November and 2007 December. A sharp increase in the 3.6 mu m flux followed by a rapid decrease measured similar to 150 days before and similar to 80 days after the initial outburst, respectively, reveal a mid-IR counterpart to the coincident optical and high luminosity X-ray outbursts. At late times, after the outburst (similar to 2000 days), the 3.6 and 4.5 mu m emission increased to over a factor of two. times the progenitor flux and is currently observed (as of 2016 Feb) to be fading, but still above the progenitor flux. We attribute the re-brightening mid-IR emission to continued dust production and increasing luminosity of the surviving system associated with SN. 2010da. We analyze the evolution of the dust temperature (T-d similar to 700-1000 K), mass (Md similar to 0.5-3.8 x. 10(-7) M circle dot), luminosity (L-IR similar to 1.3-3.5 x 10(4) L circle dot), and the equilibrium temperature radius (R-eq similar to 6.4-12.2 au) in order to resolve the nature of SN. 2010da. We address the leading interpretation of SN. 2010da as an eruption from a luminous blue variable high-mass X-ray binary (HMXB) system. We propose that SN. 2010da is instead a supergiant (sg)B[e]-HMXB based on similar luminosities and dust masses exhibited by two other known sgB[e]-HMXB systems. Additionally, the SN. 2010da progenitor occupies a similar region on a mid-IR color-magnitude diagram (CMD) with known sgB[e] stars in the Large Magellanic Cloud. The lower limit estimated for the orbital eccentricity of the sgB[e]-HMXB (e > 0.82) from X-ray luminosity measurements is high compared to known sgHMXBs and supports the claim that SN. 2010da may be associated with a newly formed HMXB system.
17

SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

Kasliwal, Mansi M., Bally, John, Masci, Frank, Cody, Ann Marie, Bond, Howard E., Jencson, Jacob E., Tinyanont, Samaporn, Cao, Yi, Contreras, Carlos, Dykhoff, Devin A., Amodeo, Samuel, Armus, Lee, Boyer, Martha, Cantiello, Matteo, Carlon, Robert L., Cass, Alexander C., Cook, David, Corgan, David T., Faella, Joseph, Fox, Ori D., Green, Wayne, Gehrz, R. D., Helou, George, Hsiao, Eric, Johansson, Joel, Khan, Rubab M., Lau, Ryan M., Langer, Norbert, Levesque, Emily, Milne, Peter, Mohamed, Shazrene, Morrell, Nidia, Monson, Andy, Moore, Anna, Ofek, Eran O., Sullivan, Donal O’, Parthasarathy, Mudumba, Perez, Andres, Perley, Daniel A., Phillips, Mark, Prince, Thomas A., Shenoy, Dinesh, Smith, Nathan, Surace, Jason, Dyk, Schuyler D. Van, Whitelock, Patricia A., Williams, Robert 19 April 2017 (has links)
We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS-SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer/IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between -11 and -14 (Vega-mag) and [3.6]-[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from < 0.1 mag yr(-1) to > 7 mag yr(-1). SPRITEs occur in star-forming galaxies. We present an indepth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.
18

Ultraviolet spectroscopy of the blue supergiant SBW1: the remarkably weak wind of a SN 1987A analogue

Smith, Nathan, Groh, Jose H., France, Kevin, McCray, Richard 06 1900 (has links)
The Galactic blue supergiant SBW1 with its circumstellar ring nebula represents the best known analogue of the progenitor of SN 1987A. High-resolution imaging has shown H alpha and infrared structures arising in an ionized flow that partly fills the ring's interior. To constrain the influence of the stellar wind on this structure, we obtained an ultraviolet (UV) spectrum of the central star of SBW1 with the Hubble Space Telescope Cosmic Origins Spectrograph. The UV spectrum shows none of the typical wind signatures, indicating a very low mass-loss rate. Radiative transfer models suggest an extremely low rate below 10(-10) M-circle dot yr(-1), although we find that cooling time-scales probably become comparable to (or longer than) the flow time below 10(-8) M-circle dot yr(-1). We therefore adopt this latter value as a conservative upper limit. For the central star, the model yields T-eff = 21 000 +/- 1000 K, log(g(eff)) = 3.0, L similar or equal to 5 x 10(4) L-circle dot, and roughly Solar composition except for enhanced N abundance. SBW1' s very low mass-loss rate may hinder the wind's ability to shape its nebula and to shed angular momentum. The spin-down time-scale for magnetic breaking is more than 500 times longer than the age of the ring. This, combined with the star's slow rotation rate, constrains merger scenarios to form ring nebulae. The mass-loss rate is at least 10 times lower than expected from mass-loss recipes, without any account of clumping. The physical explanation for why SBW1' s wind is so weak presents an interesting mystery.
19

The Morphology and Uniformity of Circumstellar OH/H<sub>2</sub>O Masers around OH/IR Stars

Felli, Derek Sean 01 December 2017 (has links)
Even though low mass stars (< 8 solar masses) vastly outnumber high mass stars (< 8 solar masses), the more massive stars drive the chemical evolution of galaxies from which the next generation of stars and planets can form. Understanding mass loss of asymptotic giant branch stars contributes to our understanding of the chemical evolution of the galaxy, stellar populations, and star formation history. Stars with mass < 8 solar masses form planetary nebulae, while those with mass < 8 solar masses go supernova. In both cases, these stars enrich their environments with elements heavier than simple hydrogen and helium molecules. While some general info about how stars die and form planetary nebulae are known, specific details are missing due to a lack of high-resolution observations and analysis of the intermediate stages. For example, we know that mass loss in stars creates morphologically diverse planetary nebulae, but we do not know the uniformity of these processes, and therefore lack detailed models to better predict how spherically symmetric stars form asymmetric nebulae. We have selected a specific group of late-stage stars and observed them at different scales to reveal the uniformity of mass loss through different layers close to the star. This includes observing nearby masers that trace the molecular shell structure around these stars. This study revealed detailed structure that was analyzed for uniformity to place constraints on how the mass loss processes behave in models. These results will feed into our ability to create more detailed models to better predict the chemical evolution of the next generation of stars and planets.
20

Flame Retardancy Of Polyamide Compounds And Micro/nano Composites

Gunduz, Huseyin Ozgur 01 July 2009 (has links) (PDF)
In the first part of this dissertation, glass fiber reinforced/unreinforced polyamide 6 (PA6) and polyamide 66 (PA66) were compounded with three different flame retardants, which were melamine cyanurate, red phosphorus and brominated epoxy with antimony trioxide, by using an industrial scale twin screw extruder. Then, to investigate flame retardancy of these specimens, UL-94, Limiting Oxygen Index (LOI) and Mass Loss Cone Calorimeter (MLC) tests were carried out. In addition to flammability tests, thermogravimetric analysis (TGA) and tensile testing were performed. Results of the tensile tests were evaluated by relating them with fiber length distributions and fracture surface morphologies under scanning electron microscope (SEM). Incorporation of melamine cyanurate (MCA) to PA6 led to some increase in LOI value and minor reductions in Peak Heat Release Rate (PHRR) value. However, it failed to improve UL-94 rating. Moreover, poor compatibility of MCA with PA6 matrix caused significant reductions in tensile strength. Brominated epoxy in combination with antimony trioxide (Br/Sb) was compounded with both glass fiber reinforced PA6 and PA66. Br/Sb synergism was found to impart excellent flammability reductions in LOI value and UL-94 as V-0 rating. Effectiveness of Br/Sb flame retardant was also proven by the MLC measurements, which showed excessive reductions in PHRR and Total Heat Evolved (THE) values. On the other hand, Br/Sb shifted the degradation temperature 100&deg / C lower and decreased the tensile strength value, due to poor fiber-matrix adhesion and decreased fiber lengths. Red phosphorus (RP), when introduced to glass fiber reinforced PA66 induced V-0 rating in UL-94 together with significant increase in LOI value, and major decrease in PHRR. Degradation temperature was 20&deg / C lower while mechanical properties were kept at acceptable values compared to neat glass fiber reinforced PA66. In the second part of this dissertation, to investigate synergistic flame retardancy of nanoclays / glass fiber reinforced PA6 was compounded by certain nanoclay and an organo-phosphorus flame retardant (OP), which contains aluminum phosphinate, melamine polyphosphate and zinc borate, in a laboratory scale twin screw extruder. Exfoliated clay structure of the nanocomposites was assessed by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), while thermal stability and combustion behaviors were evaluated by TGA, LOI, UL-94 and MLC. Replacement of a certain fraction of the flame retardant with nanoclay was found to significantly reduce PHRR and THE values, and delay the ignition. Moreover, remarkable improvements were obtained in LOI values along with maintained UL-94 ratings. Residue characterization by ATR-FTIR and SEM ascribed the enhanced flame retardancy of nanocomposite specimens to the formation of a glassy boron-aluminum phosphate barrier reinforced by clay layers at the nanoscale.

Page generated in 0.0409 seconds