1 |
Développement de nouveaux textiles biomimétiques pour des prothèses vasculaires / Development of new biomimetic textiles for new arterial prosthesesLemercier, Audrey 12 May 2015 (has links)
L'objectif de cette thèse est de développer de nouveaux textiles biomimétiques pour réaliser des prothèses vasculaires au comportement mécanique proche de celui de l'aorte native, afin de limiter les problèmes post-opératoires observés actuellement. Afin d'établir le cahier des charges, un modèle de comportement de l'AA inspiré d'un modèle multicouches a été ajusté sur des essais biaxiaux de la littérature réalisés sur des échantillons d'AA excisés, pour trois groupes d'âge distincts. Ce modèle a ensuite été implémenté dans un code de calculs par éléments finis afin de simuler le comportement mécanique de l'aorte saine soumise à un ensemble de sollicitations mécaniques, tant à l'échelle du matériau (traction uni et biaxiale, flexion) qu'à celle de la structure (gonflement avec pré-élongation, flexion, compression diamétrale). Dans un second temps, des essais de caractérisation couplés à des mesures par imagerie ont été mis en œuvre sur des prothèses du commerce, avec les mêmes conditions limites et de chargement que les simulations numériques. Ces essais ont permis d'identifier les écarts de comportement mécanique entre les prothèses actuelles et l'aorte native. Afin de pallier à cela, la dernière partie de ce travail a été consacrée au développement de nouveaux textiles biomimétiques, i.e mimant le comportement mécanique de l'aorte native ainsi que ses principales caractéristiques histologiques (« ondulation » et « orientations de fibres privilégiées»), réalisables à l'échelle industrielle par technologie « tricot maille jetée ». Dans un premier temps, le comportement mécanique de plusieurs multifilaments en PET avec différents titres, nombres de filaments et différentes textures, a été étudié après plusieurs traitements (thermique…). Ceci a permis de sélectionner un fil en particulier pour la réalisation des textiles. Par la suite, une première optimisation des paramètres de fabrication (armure, densité de mailles, jauge) a été réalisée pas-à-pas à travers plusieurs campagnes de réalisations et de caractérisations de tricots plans en sollicitation uniaxiale et biaxiale. Enfin, des premiers essais de mise en forme tubulaire ont été réalisés à partir des textiles optimisés. Deux procédés de mise en forme ont été développés : tubes cousus / tubes tramés. La production de « tubes tramés » continus est une technologie innovante à notre connaissance, et prometteuse. Le comportement mécanique des tubes réalisés a été caractérisé en gonflement pour une première évaluation. Plus spécifiquement, l'effet des procédés appliqués sur les textiles médicaux (lavage, traitement thermique, enduction) a été testé sur des échantillons de tube tramé et de textiles plans. Ces premiers essais ont montré qu'en pilotant les paramètres de ces différents traitements et plus particulièrement ceux du traitement thermique, il est possible de moduler le comportement mécanique des tricots afin qu'il s'approche au mieux de celui de l'AA. / This thesis aims at developing new biomimetic textiles to design vascular prostheses with a mechanical behavior close to the one of the host aorta, in order to reduce current post-operative problems. To define the ideal target properties, a AA mechanical model was chosen, based on a multi-layered model from the literature. The model parameters were adjusted on biaxial tensile data reported in the literature, performed on excised AA samples for three different age groups. Then, this model was implemented in a finite element code in order to simulate the mechanical behavior of the healthy aorta submitted to various mechanical loadings, both at the material's scale (uni- and biaxial tensile tests, bending) and at the structure's scale (inflation with prestretch, bending, diametric compression). Secondly, several commercial prostheses were characterized using dedicated experimental devices combined with image recordings. The prostheses were tested under the same boundary and loading conditions as the ones used in the numerical simulations. These tests showed that the actual prostheses are not fully mechanically compatible with the host aorta. In order to solve this problem, the last part of this work was dedicated to the design of new biomimetic textiles, i.e. mimicking the healthy aorta's mechanical behavior and main histologic properties (“wavy fibres” and “preferred fiber orientations”), which can be produced industrially using “warp knitting” technology. Firstly, the mechanical behavior of several PET yarns made of different titers, filament numbers and textures were characterized after several treatments (thermal, etc.). This step enabled to identify one specific yarn to produce the biomimetic textiles. Then, a first optimization of the manufacturing parameters (weave, gauge, density, etc.) was made step by step by means of several textile production and planar tests (uni- and biaxial tensile tests). Finally, several trials were conducted to design tubular structures from the optimized textiles. Two shaping methods were developed: sewed tubes / weaved tubes. The continuously “weaved tubes” production is an innovative and promising technology as far as we know. The mechanical behavior of the new tubes was characterized using inflation tests for a first assessment. More specifically, the effect of the treatments usually applied on medical textiles (cleaning, thermal treatment, coating) was tested on weaved tubes and planar textiles samples. By adjusting the parameters of the several processes - and mostly those of thermal treatments – it was possible to adjust the textiles' mechanical behavior in order to make it the closest to the AA's one.
|
2 |
Caractérisation et valorisation de fibres de chanvre issues de sols et de matériels délaissés : cas du traitement par explosion à la vapeur / Characterization and valorization of hemp fibers from abandoned soils and materials : steam explosion treatmentSauvageon, Thibaud 27 November 2017 (has links)
Depuis des millénaires, le chanvre est cultivé pour ses fibres. Longues et résistantes, elles peuvent notamment entrer dans la composition de matériaux textiles et composites, secteurs industriels en plein essor. Cependant, leur manque d’homogénéité et la complexité de leur affinage ne leur permettent pas encore d’être compétitives face aux fibres synthétiques ou de coton. Mais des fibres de chanvre fines pourraient être produites à partir de fibres brutes en utilisant un traitement par explosion à la vapeur à bas coût, faible consommation d’énergie et avec un faible impact environnemental. Une caractérisation morphologique, chimique et mécanique des fibres a été réalisée avant et après traitement dans le but d’optimiser les paramètres de ce procédé, selon une méthodologie de plan d’expériences. Ces essais ont montré que l’explosion à la vapeur pouvait être utilisée pour produire des fibres correspondant aux critères imposés par l’industrie textile et des matériaux composites. Des éléments ont aussi été apportés sur une éventuelle industrialisation de l’explosion à la vapeur. Là encore, les résultats montrent que ce procédé pourrait être industriellement compétitif en termes de coûts, de consommation en eau et en énergie, et de rendements. Enfin, des fibres ont été produites à partir de sols pollués contenant des métaux lourds. Les teneurs en métaux dans les différentes parties de la plante et dans les fibres ont été mesurées avant et après explosion à la vapeur. Les résultats obtenus ouvrent de nouvelles perspectives quant à un usage durable de Technosols (notamment des friches industrielles) pour la production de fibres de chanvre à usage industriel / Hemp plants have been cultivated for their usable fibers for thousands of years. The fibers are long and resistant and can be utilized for creation of textile and composite materials, relevant to burgeoning industrial sectors. However, due to their lack of homogeneity and the complexity of their refining, hemp fibers are unable to compete with synthetic and cotton fibers. But fine hemp fibers could be successfully produced from technical fibers using a steam explosion treatment at a low cost, a low energy consumption and with a low environmental impact. To optimize the parameters of this process, a morphological, chemical, and mechanical characterization was performed before and after steam explosion using a design of experiments methodology. These experiments showed that this process can be used to produce hemp fibers with the standards defined by the textile and composite materials industries. Some features have also suggested some prospects in the industrialization of steam explosion for fibers production. These results showed that this process could be industrially competitive in terms of costs, water and energy consumption and yield. Finally, phytoremediation-borne hemp fibers were produced from soils contaminated with trace elements. The metals concentrations in plant components and in the fibers were measured before and after steam explosion treatment. The results offer new insights and prospects for a sustainable use of Technosols (in particular brownfield sites) by the production of hemp fibers
|
Page generated in 0.08 seconds