Spelling suggestions: "subject:"materiais compósitos""
1 |
Preparação e caracterização de nanopartículas de prata e de nanocompósitos poliméricos antimicrobianos / Preparation and characterization of silver nanoparticles and antimicrobial polymer nanocompositesAndrade, Patrícia Fernanda, 1977- 12 March 2013 (has links)
Orientador: Maria do Carmo Gonçalves / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-24T02:16:34Z (GMT). No. of bitstreams: 1
Andrade_PatriciaFernanda_D.pdf: 6247587 bytes, checksum: f34d80dacc0ecfa31beb35c9a4f8ab70 (MD5)
Previous issue date: 2013 / Resumo: Neste trabalho foram preparadas e caracterizadas nanopartículas de prata estabilizadas com polivinilpirrolidona (PVP) e ß-ciclodextrina (ß-CD), que foram incorporadas em matrizes poliméricas, para a obtenção de membranas. As nanopartículas de prata (AgNP) foram sintetizadas pelo método de redução química. Para as AgNP-PVP, foi investigada a influência da concentração do precursor (AgNO3) e da razão molar de PVP em relação ao precursor. A partir dos resultados obtidos, foram selecionadas as melhores condições experimentais para a preparação das AgNP-ß-CD. As AgNP foram caracterizadas por espectroscopias na região do ultravioleta-visível e na região do infravermelho com transformada de Fourier (UV-vis e FTIR), difração de raios X (DRX), espectroscopia de espalhamento de Luz Dinâmico (DLS), microscopia eletrônica de transmissão (TEM) e análise termogravimétrica (TGA). As morfologias das AgNP-PVP e AgNP-ß-CD foram investigadas visando a caracterização da camada de polímero ao redor das nanopartículas, pela técnica de imagem espectroscópica de elétrons associada à microscopia eletrônica de transmissão (ESI-TEM). As nanopartículas estabilizadas com PVP apresentaram diâmetro médio de 45 nm, quando preparadas a partir da concentração de 0,01 mol L-1 e razão molar PVP/AgNO3 igual a 1,5. As nanopartículas estabilizadas por ß-CD apresentaram diâmetro médio de 28 nm, quando preparadas nas mesmas condições indicadas para as de AgNP-PVP. O estudo morfológico da camada polimérica ao redor das AgNP-PVP e AgNP-ß-CD, realizado por ESI-TEM, confirmou a maior concentração de carbono e oxigênio nessa região, sugerindo a existência de uma camada definida e coesa dos estabilizantes envolvendo as nanopartículas. Os valores de concentração mínima inibitória contra a E. coli, após 3 h e 2 h de incubação, foram 12,5 µg mL-1 e 20 µg mL-1 para AgNP-PVP e AgNP-ß-CD, respectivamente.
As membranas de polissulfona (PSf) e acetato de celulose (CA), contendo AgNP-PVP e AgNP-ß-CD, respectivamente, foram obtidas pelo método de inversão de fases, tendo como variável a quantidade de AgNP adicionada às matrizes poliméricas. Todas as membranas foram caracterizadas por UV-vis,DRX, FTIR, microscopia eletrônica de varredura com fonte de emissão de campo (FESEM), TEM, calorimetria diferencial de varredura (DSC), TGA, ângulo de contato e fluxo de água. A incorporação de nanopartículas de prata nas membranas de PSf e CA foi realizada utilizando diferentes metodologias, que influenciaram tanto o diâmetro médio das nanopartículas, quanto a morfologia e sua distribuição na matriz polimérica. A incorporação das nanopartículas nas membranas não alterou a estabilidade térmica das matrizes poliméricas, entretanto, aumentou seu caráter hidrofílico e, consequentemente, o fluxo de água. A membrana de PSf, contendo 2% de AgNP, apresentou 100% de inibição de crescimento bacteriano para E. coli, como também a membrana CA para S. aureus e E. coli. As membranas de PSf e CA, contendo 2% de AgNP, apresentaram redução na formação de biofilme para E. coli de 89 ± 1% e 98 ± 3%, respectivamente. Estas membranas podem ser consideradas interessantes em diferentes aplicações, tais como no tratamento de água e recuperação de águas residuais / Abstract: Silver nanoparticles (AgNPs), stabilized with polyvinylpyrrolidone (PVP) and ß-cyclodextrin (ß-CD), were prepared, characterized and incorporated into polymer matrices to produce membranes in this work. The AgNPs were synthesized by the chemical reduction method. The influence of the precursor concentration and PVP molar ratio in relation to the precursor concentration (AgNO3) was investigated for the AgNP-PVP. Based on the results, the best experimental conditions were selected for the preparation of AgNP-ß-CD. The AgNPs were characterized by UV-visible and Fourier transformed infrared spectroscopies (FTIR and UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermogravimetry analysis (TGA). The morphologies of the AgNP-PVP and AgNP-ß-CD were investigated by electron spectroscopy image associated to TEM (ESI-TEM) to characterize of the polymer layer around the nanoparticles. The nanoparticles which were stabilized with PVP presented an average diameter of 45 nm, when prepared from the 0.01 mol L-1 concentration and 1.5 PVP/ AgNO3 molar ratio. The nanoparticles which were stabilized by ß-CD showed an average diameter of 28 nm, when prepared under the same conditions indicated above. The morphological study of the polymeric layer around the AgNP-PVP and AgNP-ß-CD, carried out by ESI-TEM, confirmed a greater concentration of carbon and oxygen in this region, suggesting the existence of a defined and cohesive stabilizing layer surrounding the nanoparticles. The minimum inhibitory concentration values against E. coli after 2 to 3 hours of incubation were 12.5 µg mL-1 and 20 µg mL-1 for AgNP-PVP and AgNP-ß-CD, respectively. The polysulfone (PSf) and cellulose acetate (CA) membranes, containing AgNP-PVP and AgNP-ß-CD, respectively, were obtained by the phase inversion method, by varying the amount of silver nanoparticles added to the polymer matrix. All the membranes were characterized by UV-vis, XRD, FTIR, field emission scanning electron microscopy (FESEM), TEM, differential scanning calorimetry (DSC), contact angle and water flux. The incorporation of the silver nanoparticles into the PSf and CA membranes was carried out using different methods, which influenced both the average diameter of the nanoparticles and the morphology and their distribution in the polymer matrices. The addition of nanoparticles into the membranes did not change the thermal stability of the polymer matrices, however, it did increase the hydrophilic character and consequently water flux. The PSf membranes containing 2% of silver nanoparticles showed 100% inhibition growth of E. coli, as well as the CA membrane that showed 100% inhibition growth for S. aureus and E. coli. The PSf and CA membranes, containing 2% of silver nanoparticles, presented a reduction in the biofilm formation for E. coli of 89 ± 1% and 98 ± 3%, respectively. These membranes can be considered interesting materials in different applications such as in water treatment and the recovery of residual water / Doutorado / Físico-Química / Doutora em Ciências
|
2 |
Fabricação e caracterização de filme fino regenerável hidrofóbico / Fabrication and characterization of healable hydrophobic thin filmLy, Kally Chein Sheng, 1992- 28 August 2017 (has links)
Orientador: Antonio Riul Júnior / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-09-02T14:50:41Z (GMT). No. of bitstreams: 1
Ly_KallyCheinSheng_M.pdf: 2442128 bytes, checksum: 86716c6c19fa3a9db425b32c36463141 (MD5)
Previous issue date: 2017 / Resumo: Materiais biomiméticos são inspirados em estruturas biológicas para a obtenção de propriedades e funcionalidades específicas. Dentre os materiais biomiméticos, os que são capazes de se regenerar (self-healing) despertaram grande interesse pelo potencial de aplicação em diversas áreas. Para ilustrar, alguns materiais autorregeneráveis poliméricos apresentam regeneração múltipla, necessitando apenas de água para que a regeneração ocorra em alguns minutos, aumentando consideravelmente a proteção mecânica da superfície contra desgastes, danos mecânicos entre outros. Entretanto, múltiplas imersões em água ou em meios aquosos pode degradar o material e neste contexto este projeto visa incorporar a hidrofobicidade a um sistema regenerável. Desta forma, o material regenerável hidrofóbico, durante sua regeneração imersa em água, poderá diminuir a interação da superfície não danificada com a água, reduzindo corrosões e degradações devido a meios aquosos. Estudamos a nanoestruturação de materiais através da técnica de automontagem por adsorção física (LbL, do inglês Layer-by-Layer) utilizando os polieletrólitos poli(etileno imina) (PEI) e poli(ácido acrílico) (PAA), a fim de produzir revestimentos capazes de se regenerar a danos mecânicos micrométricos. Adicionalmente, foram incorporados a estes dois materiais nanofolhas de óxido de grafeno reduzido (rGO) funcionalizados com poli(cloridrato de alilamina) (GPAH) e poli(estireno-sulfonato de sódio) (GPSS), com o intuito de verificarmos um aumento de resistência a abrasão do material e alterações nas propriedades elétricas na nanoestrutura formada para aumentar o potencial de aplicação em eletrônica flexível. A arquitetura molecular (GPAH-PEI/GPSS-PAA)60 foi caracterizada com espectroscopia Raman, medidas de ângulo de contato, microscopia de força atômica, medidas elétricas e nanoindentação. Foi observada boa regeneração do material após 15 minutos de imersão em água a temperatura ambiente em um dano mecânico da ordem de 10 micrômetros. Também observamos boa hidrofobicidade do filme LbL (GPAH-PEI/GPSS-PAA)60 ( teta = 136º), e medidas de microscopia de força atômica e perfilometria indicaram, respectivamente, rugosidade superficial de 55 nm em uma área de (2 ?m x 2 ?m) e espessura de filme de 30 ?m. A análise Raman apontou para uma forte interação das nanofolhas de rGO com os polímeros, corroborando o tem caráter elétrico isolante do filme (GPAH-PEI/GPSS-PAA)60, que apresentou função trabalho ~ 5,2 eV e condutividade elétrica da ordem de 10-7 S/cm, que acreditamos resultar das fortes interações das nanofolhas com os polímeros. Por fim, medidas de nanoindentação indicaram que a incorporação de nanofolhas de GPSS e GPAH aumentou em 10 vezes a dureza do nanocompósito formado, sem comprometer a regeneração / Abstract: Biomimetic materials are inspired in biological structures to obtain specific properties and functionalities and among them, those capable of self-healing brought great interest due to high potential of application in different areas. To illustrate, some polymeric self-healing materials present multiple regeneration in the presence of water, with the regeneration occurring within a few minutes, increasing considerably the mechanical protection of a surface against wear and mechanical damage among others. Nevertheless, multiple immersions in water or in aqueous media can degrade the material and in this context this project aims the incorporation of hydrophobicity to a self-healing system. In this way, the self-healing, hydrophobic material during its immersion in water may decrease the interaction of the damaged surface with water, reducing corrosion and degradation due to aqueous media. We study the nanostructuration f materials through the layer-by-layer (LbL) technique using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA) in order to produce self-healing coatings from micrometric mechanical damages. In addition, we also incorporate to these materials reduced graphene oxide (rGO) functionalized with poly(allylamine hydrochloride) (GPAH) and poly(styrene-sodium sulfonate) (GPSS), with the purpose of verifying an increase in the mechanical abrasion resistance of the material and changes in the electrical properties of the nanostructures formed to increase the potential application in flexible electronics. The molecular architecture (GPAH-PEI/GPSS-PAA)60 was characterized by Raman spectroscopy, contact angle measurements, atomic force microscopy, electrical measurements and nanoindentation. It was observed good self-healing capacity after 15 min f immersion in water at room temperature in a mechanical scratch of the order of 10 micrometers. It was also observed good hydrophobicity in the (GPAH-PEI/GPSS-PAA)60 LbL film ( teta = 136º) and atomic force microscopy and perfilometer indicate, respectively, surface roughness of 55 nm in a (2 ?m x 2 ?m) area and film thickness of 30 ?m. Raman analysis pointed out to a strong physical interaction between the rGO nanoplatelets with the polymeric materials, corroborating the strong insulating nature of (GPAH-PEI/GPSS-PAA)60 film that displayed a work function of 5.2 eV and electrical conductivity of 10-7 S/cm, which we believe results from the strong interactions of the nanosheets with the polymers. Finally, nanoindentation measurements indicated that the incorporation of GPAH and GPSS nanoplatelets increased hardness by 10 times, without compromising the regeneration / Mestrado / Física / Mestra em Física / 1543078/2015 / CAPES
|
Page generated in 0.0759 seconds