1 |
Recognition of online handwritten mathematical expressions using contextual information / Reconhecimento online de expressões matemáticas manuscritas usando informação contextualAguilar, Frank Dennis Julca 29 April 2016 (has links)
Online handwritten mathematical expressions consist of sequences of strokes, usually collected through a touch screen device. Automatic recognition of online handwritten mathematical expressions requires solving three subproblems: symbol segmentation, symbol classification, and structural analysis (that is, the identification of spatial relations, as subscript or superscript, between symbols). A main issue in the recognition process is ambiguity at symbol or relation levels that often leads to several likely interpretations of an expression. Some methods treat the recognition problem as a pipeline process, in which symbol segmentation and classification is followed by structural analysis. A main drawback of such methods is that they compute symbol level interpretations without considering structural information, which is essential to solve ambiguities. To cope with this drawback, more recent methods adapt string parsing techniques to drive the recognition process. As string grammars were originally designed to model linear arrangements of objects (like in text, where symbols are arranged only through left-to-right relations), non-linear arrangements of mathematical symbols (given by the multiple relation types of mathematics) are modeled as compositions of production rules for linear structures. Then, parsing an expression involves searching for linear structures in the expression that are consistent with the structure of the production rules. This last step requires the introduction of constraints or assumptions, such as stroke input order or vertical and horizontal alignments, to linearize the expression components. These requirements not only limit the effectiveness of the methods, but also make difficult their extension to include new expression structures. In this thesis, we model the recognition problem as a graph parsing problem. The graph-based description of relations in the production rules allows direct modeling of non-linear mathematical structures. Our parsing algorithm determines recursive partitions of the input strokes that induce graphs matching the production rule graphs. To mitigate the computational cost, we constrain the possible partitions to graphs derived from sets of symbol and relation hypotheses, calculated using previously trained classifiers. A set of labels that indicate likely interpretations is associated to each symbol and relation hypothesis, and treatment of ambiguity at symbol and relation levels is left to the parsing process. The parsing algorithm builds a forest in which each tree corresponds to an interpretation coherent with the grammar. We define a score function, optimized through training data, that associates a cost to each tree. We then select a tree with minimum cost as result. Experimental evaluation shows that the proposed method is more accurate than several state of the art methods. Even though graph parsing is a computationally expensive process, the use of symbol and relation hypotheses to constrain the search space is able to effectively reduce complexity, allowing practical application of the process. Furthermore, since the proposed parsing algorithm does not make direct use of structural particularities of mathematical expressions, it has potential to be adapted for other two-dimensional object recognition problems. As a secondary contribution of this thesis, we have proposed a framework to automatize the process of building handwritten mathematical expression datasets. The framework has been implemented in a computer system and used to generate part of the samples used in the experimental part of this thesis. / Expressões matemáticas manuscritas online estão constituídas por sequências de traços. O reconhecimento automático de tais expressões requer a solução de três subproblemas: segmentação de símbolos, classificação de símbolos e análise estrutural (isto é, a identificação de relações espaciais, tais como sobrescrito e subscrito, entre símbolos). Uma das dificuldades principais do problema é a ambiguidade no nível de símbolos ou relações, que frequentemente sugere várias possíveis interpretações de uma mesma expressão. Alguns métodos de reconhecimento tratam o problema de maneira sequencial, onde um processo de segmentação e classificação de símbolos é seguido de análise estrutural. Um problema principal de tais métodos é que eles determinam interpretações no nível de símbolos sem considerar informação estrutural, a qual é importante para solucionar ambiguidades. Para solucionar esse problema, métodos mais recentes adaptaram técnicas de parsing de strings. Dado que gramáticas de strings foram originalmente projetadas para modelar arranjos lineares de tokens (como texto, onde símbolos são arranjados de esquerda a direita), a estrutura não linear dos símbolos matemáticos (dada pelos multiples tipos de relações espaciais) é modelada como uma composição de regras de produção de estruturas lineares. Dessa maneira, o parsing de uma expressão consiste em determinar estruturas lineares na expressão que são consistentes com as estruturas das regras de produção. Esse último passo requer a introdução de restrições, baseadas na definição de uma ordem em relação ao tempo ou espaço, para linearizar os componentes da expresão. Os requerimentos das gramáticas de strings não apenas limitam a efectividade dos métodos, mas também dificultam a extensão dos métodos na inclusão de novas estruturas. Neste trabalho, o problema de reconhecimento de expressões matemáticas é modelado como um problema de parsing de grafos. A representação por meio de grafos nas regras de produção permite uma representação direta das estruturas não lineares das expressões matemáticas. O algoritmo de parsing determina partições dos traços de entrada que induzem grafos isomorfos aos grafos das regras de produção. Para mitigar o custo computacional, restringimos as possíveis partições a aquelas derivadas de um conjunto de possíveis símbolos e relações identificados por classificadores previamente treinados. Um conjunto de rótulos que indica interpretações alternativas é associado a cada símbolo e relação; a decisão da melhor interpretação é realizada pelo parser. O parser construi uma floresta na qual uma árvore representa uma possível interpretação da entrada, e atribui um custo de interpretação para cada árvore, baseado nas relações e símbolos definidas na árvore. O resultado do reconhecimento é dado pela extração de uma árvore com custo mínimo. Resultados experimentais do método proposto mostram um melhor desempenho em comparação com vários métodos descritos na literatura. A pesar do parsing de grafos ser um processo computacionalmente caro, a restrição do espaço de busca proposto reduz a complexidade o suficiente para permitir uma aplicação prática da abordagem. Adicionalmente, dado que a abordagem não pressupõe estruturas particulares das expressões matemática, o método tem potencial para ser adaptado para o reconhecimento de outras estruturas bidimensionais. Uma contribuição secundaria deste trabalho é o desenvolvimento de uma framework para construção automática de bancos de dados de expressões matemáticas manuscritas. A framework tem sido implementada num sistema usado para criar parte das amostras de expressões usadas para avaliação do método de reconhecimento.
|
2 |
Flickors och pojkars matematiska uttryck i förskolan : Ett genusperspektiv / Girls and boys mathematical expressions in preschool : A gender perspectiveLöving, Charlotte, Blomstrand, Yvonne, Karlsson, Anneli January 2014 (has links)
Denna kvalitativa studie behandlar matematiska uttryck hos förskolebarn. Syftet med studien är att undersöka och beskriva flickors och pojkars matematiska uttryck i förskolan samt vilka eventuella skillnader som kan iakttas i deras uttryckssätt. Detta mot bakgrund av att matematiken har fått ett allt större utrymme i förskolans verksamhet efter att förskolan fick sin första läroplan, Lpfö 98, med uttalade mål att sträva mot. Tidigare forskning visar att pedagoger bemöter flickor och pojkar olika i förskolan. Kan det ha att göra med att de uttrycker sig olika? Med detta som grund ville vi undersöka om det finns skillnader i flickors och pojkars matematiska uttryck.Matematik är ett språk och barn i förskolan utvecklar matematisk förståelse genom upplevelser i lek och sociala sammanhang. Nya matematiska upplevelser sammanfogas med tidigare erfarenheter och ger ny förståelse. Studien genomförs på tre olika förskolor där vi observerar barn, ett till fyra år, i tre olika situationer som är återkommande för barnen; tamburen, uteleken samt måltiden. Datainsamlingen består av film och anteckningar. Resultatet visar att förskolebarn ger uttryck för matematiska begrepp som problemlösning, rumsuppfattning, antalsuppfattning, klassificering och ordningsföljd. Detta är genomgående i alla tre observationssituationerna. Resultatet visar skillnader i flickors och pojkars matematiska uttryckssätt. / The purpose of this qualitative study is to examine and describe preschool children's mathematical expressions and whether we can perceive any differences between girls and boys expressions. Mathematics has been given a place in preschool. Previous research shows that teachers treat girls and boys differently in preschool. Are there any differences between girls and boys mathematic expressions? We wanted to examine this.Mathematics is a language and children in preschool develop mathematical understanding through experiences in playground and in social context. New mathematical experiences together with previous experiences, provides new understanding. The study is conducted at three different preschools where we observe children in the age of one to four years, in three different situations. The chosen situations are recurrent for the children; hall, the playground outside and meal. Data collection contains film and notes. The result shows that preschool children express mathematical concepts such as problem solving, spatial awareness, number perception, classification and sequence. This is consistent across all three observational situations. The result shows differences in girls and boys mathematical expressions.
|
3 |
Recognition of online handwritten mathematical expressions using contextual information / Reconhecimento online de expressões matemáticas manuscritas usando informação contextualFrank Dennis Julca Aguilar 29 April 2016 (has links)
Online handwritten mathematical expressions consist of sequences of strokes, usually collected through a touch screen device. Automatic recognition of online handwritten mathematical expressions requires solving three subproblems: symbol segmentation, symbol classification, and structural analysis (that is, the identification of spatial relations, as subscript or superscript, between symbols). A main issue in the recognition process is ambiguity at symbol or relation levels that often leads to several likely interpretations of an expression. Some methods treat the recognition problem as a pipeline process, in which symbol segmentation and classification is followed by structural analysis. A main drawback of such methods is that they compute symbol level interpretations without considering structural information, which is essential to solve ambiguities. To cope with this drawback, more recent methods adapt string parsing techniques to drive the recognition process. As string grammars were originally designed to model linear arrangements of objects (like in text, where symbols are arranged only through left-to-right relations), non-linear arrangements of mathematical symbols (given by the multiple relation types of mathematics) are modeled as compositions of production rules for linear structures. Then, parsing an expression involves searching for linear structures in the expression that are consistent with the structure of the production rules. This last step requires the introduction of constraints or assumptions, such as stroke input order or vertical and horizontal alignments, to linearize the expression components. These requirements not only limit the effectiveness of the methods, but also make difficult their extension to include new expression structures. In this thesis, we model the recognition problem as a graph parsing problem. The graph-based description of relations in the production rules allows direct modeling of non-linear mathematical structures. Our parsing algorithm determines recursive partitions of the input strokes that induce graphs matching the production rule graphs. To mitigate the computational cost, we constrain the possible partitions to graphs derived from sets of symbol and relation hypotheses, calculated using previously trained classifiers. A set of labels that indicate likely interpretations is associated to each symbol and relation hypothesis, and treatment of ambiguity at symbol and relation levels is left to the parsing process. The parsing algorithm builds a forest in which each tree corresponds to an interpretation coherent with the grammar. We define a score function, optimized through training data, that associates a cost to each tree. We then select a tree with minimum cost as result. Experimental evaluation shows that the proposed method is more accurate than several state of the art methods. Even though graph parsing is a computationally expensive process, the use of symbol and relation hypotheses to constrain the search space is able to effectively reduce complexity, allowing practical application of the process. Furthermore, since the proposed parsing algorithm does not make direct use of structural particularities of mathematical expressions, it has potential to be adapted for other two-dimensional object recognition problems. As a secondary contribution of this thesis, we have proposed a framework to automatize the process of building handwritten mathematical expression datasets. The framework has been implemented in a computer system and used to generate part of the samples used in the experimental part of this thesis. / Expressões matemáticas manuscritas online estão constituídas por sequências de traços. O reconhecimento automático de tais expressões requer a solução de três subproblemas: segmentação de símbolos, classificação de símbolos e análise estrutural (isto é, a identificação de relações espaciais, tais como sobrescrito e subscrito, entre símbolos). Uma das dificuldades principais do problema é a ambiguidade no nível de símbolos ou relações, que frequentemente sugere várias possíveis interpretações de uma mesma expressão. Alguns métodos de reconhecimento tratam o problema de maneira sequencial, onde um processo de segmentação e classificação de símbolos é seguido de análise estrutural. Um problema principal de tais métodos é que eles determinam interpretações no nível de símbolos sem considerar informação estrutural, a qual é importante para solucionar ambiguidades. Para solucionar esse problema, métodos mais recentes adaptaram técnicas de parsing de strings. Dado que gramáticas de strings foram originalmente projetadas para modelar arranjos lineares de tokens (como texto, onde símbolos são arranjados de esquerda a direita), a estrutura não linear dos símbolos matemáticos (dada pelos multiples tipos de relações espaciais) é modelada como uma composição de regras de produção de estruturas lineares. Dessa maneira, o parsing de uma expressão consiste em determinar estruturas lineares na expressão que são consistentes com as estruturas das regras de produção. Esse último passo requer a introdução de restrições, baseadas na definição de uma ordem em relação ao tempo ou espaço, para linearizar os componentes da expresão. Os requerimentos das gramáticas de strings não apenas limitam a efectividade dos métodos, mas também dificultam a extensão dos métodos na inclusão de novas estruturas. Neste trabalho, o problema de reconhecimento de expressões matemáticas é modelado como um problema de parsing de grafos. A representação por meio de grafos nas regras de produção permite uma representação direta das estruturas não lineares das expressões matemáticas. O algoritmo de parsing determina partições dos traços de entrada que induzem grafos isomorfos aos grafos das regras de produção. Para mitigar o custo computacional, restringimos as possíveis partições a aquelas derivadas de um conjunto de possíveis símbolos e relações identificados por classificadores previamente treinados. Um conjunto de rótulos que indica interpretações alternativas é associado a cada símbolo e relação; a decisão da melhor interpretação é realizada pelo parser. O parser construi uma floresta na qual uma árvore representa uma possível interpretação da entrada, e atribui um custo de interpretação para cada árvore, baseado nas relações e símbolos definidas na árvore. O resultado do reconhecimento é dado pela extração de uma árvore com custo mínimo. Resultados experimentais do método proposto mostram um melhor desempenho em comparação com vários métodos descritos na literatura. A pesar do parsing de grafos ser um processo computacionalmente caro, a restrição do espaço de busca proposto reduz a complexidade o suficiente para permitir uma aplicação prática da abordagem. Adicionalmente, dado que a abordagem não pressupõe estruturas particulares das expressões matemática, o método tem potencial para ser adaptado para o reconhecimento de outras estruturas bidimensionais. Uma contribuição secundaria deste trabalho é o desenvolvimento de uma framework para construção automática de bancos de dados de expressões matemáticas manuscritas. A framework tem sido implementada num sistema usado para criar parte das amostras de expressões usadas para avaliação do método de reconhecimento.
|
4 |
Mathematical Expression Detection and Segmentation in Document ImagesBruce, Jacob Robert 19 March 2014 (has links)
Various document layout analysis techniques are employed in order to enhance the accuracy of optical character recognition (OCR) in document images. Type-specific document layout analysis involves localizing and segmenting specific zones in an image so that they may be recognized by specialized OCR modules. Zones of interest include titles, headers/footers, paragraphs, images, mathematical expressions, chemical equations, musical notations, tables, circuit diagrams, among others. False positive/negative detections, oversegmentations, and undersegmentations made during the detection and segmentation stage will confuse a specialized OCR system and thus may result in garbled, incoherent output. In this work a mathematical expression detection and segmentation (MEDS) module is implemented and then thoroughly evaluated. The module is fully integrated with the open source OCR software, Tesseract, and is designed to function as a component of it. Evaluation is carried out on freely available public domain images so that future and existing techniques may be objectively compared. / Master of Science
|
Page generated in 0.1004 seconds