• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Manutenção de modelos para controladores preditivos industriais

Francisco, Denilson de Oliveira January 2017 (has links)
O escopo desta dissertação é o desenvolvimento de uma metodologia para identificar os modelos de canais da matriz dinâmica que estejam degradando o desempenho de controladores preditivos, ou MPC (Model Predictive Control), baseado nas técnicas de auditoria e diagnóstico deste tipo de controlador propostas por BOTELHO et al. (2015) e BOTELHO; TRIERWEILER; FARENZENA (2016) e CLARO (2016). A metodologia desenvolvida contempla dois métodos distintos. O primeiro, chamado método direto compensado, tem como base o método direto de identificação em malha fechada (LJUNG, 1987)e compensa cada saída medida do processo de modo a se reter apenas a contribuição do canal que se deseja identificar. O segundo, chamado método do erro nominal, utiliza a definição de saída nominal do processo, proposta por BOTELHO et al. (2015), como métrica para se quantificar o quão próximo o modelo está do comportamento da planta através da minimização do erro nominal. Os métodos foram aplicados ao sistema de quatro tanques cilíndricos (JOHANSSON, 2000) para dois cenários distintos, sendo o primeiro um sistema 2x2 em fase não mínima contendo um MPC trabalhando com setpoint e o segundo um sistema 4x4 em fase mínima com o MPC atuando por faixas. Para o sistema 2x2, se avaliou a influência da localização do canal discrepante (dentro ou fora da diagonal principal da matriz dinâmica de transferência) na eficácia dos métodos. Para o sistema 4x4, o estudo foi voltado para a eficácia dos métodos frentes a controladores que atuam dentro de limites para as variáveis. Os modelos identificados foram comparados pela capacidade de identificar um modelo que capturasse o zero de transmissão da planta e o RGA dinâmico, par ao sistema 2x2, e pelas respostas degrau e diagrama de Bode para o sistema 4x4. O método direto compensado resultou em baixo erro relativo no valor do zero para a discrepância na diagonal principal da matriz dinâmica e alto valor quando a discrepância se encontrava fora da diagonal principal. O método do erro nominal, por sua vez, foi capaz de identificar um modelo cujo zero de transmissão possuía baixo erro relativo frente ao zero da planta em ambos os cenários. No cenário do controlador atuando por faixas, os métodos propostos obtiveram melhores estimativas dos modelos quando comparados com o método concorrente, uma vez que apresentou alto percentual de aderência das saídas simuladas com as saídas medidas. Em todos os cenários estudados, o método do erro nominal se mostrou capaz de identificar um modelo mais robusto, pois este apresentou RGA dinâmico compatível com a planta em todo o range de frequências analisado. / The objective of this dissertation is to develop a method to identify the model for the channel of the dynamic matrix that are affecting the performance of model predictive controllers (MPC), based on the assessment and diagnosis techniques for this type of controller proposed by BOTELHO et al. (2015) e BOTELHO; TRIERWEILER; FARENZENA (2016) and CLARO (2016). The proposed methodology includes two different methods. The first, called the compensated direct method, is based on the closed-loop direct identification method (LJUNG, 1987) and compensates each process measured output in order to retain only the contribution of the channel being identified. The second, called nominal error method, uses the definition of the process nominal output, proposed by BOTELHO et al. (2015), as a metric to quantify how close the model is to the actual plant behavior by minimizing the nominal error. The proposed methods were applied to the quadruple-tank system (JOHANSSON, 2000) for two distinct scenarios, the first being a nonminimum-phase 2x2 system containing a MPC working with setpoint and the second a minimum-phase 4x4 system with the MPC working by ranges. For the 2x2 system, the influence of the model mismatch location (inside or outside the main diagonal of the dynamic transfer matrix) on the effectiveness of the methods was evaluated. For the 4x4 system, the study was focused on the effectiveness of the methods with controllers that operate within limits for the variables. The identified models were compared by the capability of identifying a model with accurate plant transmission zero and dynamic RGA, for the 2x2 system, and by the step responses and Bode diagram for the 4x4 system. The compensated direct method resulted in low relative error in the value of the transmission zero for the model mismatch located in the main diagonal of the dynamic matrix and high relative error when the mismatch was outside the main diagonal. On the other hand, the nominal error method was able to identify a model whose transmission zero had low relative error against the plant zero in both scenarios. In the scenario of a controller working by range, the proposed methods obtained better estimates of the models when compared to the concurrent method, since it presented a high percentage of adherence of the simulated outputs with the measured outputs. In all the studied scenarios, the nominal error method was able to identify a more robust model, since it presented dynamic RGA compatible with the plant in the entire range of analyzed frequencies.
2

Error Control for Network Coding

Silva, Danilo 03 March 2010 (has links)
Network coding has emerged as a new paradigm for communication in networks, allowing packets to be algebraically combined at internal nodes, rather than simply routed or replicated. The very nature of packet-mixing, however, makes the system highly sensitive to error propagation. Classical error correction approaches are therefore insufficient to solve the problem, which calls for novel techniques and insights. The main portion of this work is devoted to the problem of error control assuming an adversarial or worst-case error model. We start by proposing a general coding theory for adversarial channels, whose aim is to characterize the correction capability of a code. We then specialize this theory to the cases of coherent and noncoherent network coding. For coherent network coding, we show that the correction capability is given by the rank metric, while for noncoherent network coding, it is given by a new metric, called the injection metric. For both cases, optimal or near-optimal coding schemes are proposed based on rank-metric codes. In addition, we show how existing decoding algorithms for rank-metric codes can be conveniently adapted to work over a network coding channel. We also present several speed improvements that make these algorithms the fastest known to date. The second part of this work investigates a probabilistic error model. Upper and lower bounds on capacity are obtained for any channel parameters, and asymptotic expressions are provided in the limit of long packet length and/or large field size. A simple coding scheme is presented that achieves capacity in both limiting cases. The scheme has fairly low decoding complexity and a probability of failure that decreases exponentially both in the packet length and in the field size in bits. Extensions of the scheme are provided for several variations of the channel. A final contribution of this work is to apply rank-metric codes to a closely related problem: securing a network coding system against an eavesdropper. We show that the maximum possible rate can be achieved with a coset coding scheme based on rank-metric codes. Unlike previous schemes, our scheme has the distinctive property of being universal: it can be applied on top of any communication network without requiring knowledge of or any modifications on the underlying network code. In addition, the scheme can be easily combined with a rank-metric-based error control scheme to provide both security and reliability.
3

Error Control for Network Coding

Silva, Danilo 03 March 2010 (has links)
Network coding has emerged as a new paradigm for communication in networks, allowing packets to be algebraically combined at internal nodes, rather than simply routed or replicated. The very nature of packet-mixing, however, makes the system highly sensitive to error propagation. Classical error correction approaches are therefore insufficient to solve the problem, which calls for novel techniques and insights. The main portion of this work is devoted to the problem of error control assuming an adversarial or worst-case error model. We start by proposing a general coding theory for adversarial channels, whose aim is to characterize the correction capability of a code. We then specialize this theory to the cases of coherent and noncoherent network coding. For coherent network coding, we show that the correction capability is given by the rank metric, while for noncoherent network coding, it is given by a new metric, called the injection metric. For both cases, optimal or near-optimal coding schemes are proposed based on rank-metric codes. In addition, we show how existing decoding algorithms for rank-metric codes can be conveniently adapted to work over a network coding channel. We also present several speed improvements that make these algorithms the fastest known to date. The second part of this work investigates a probabilistic error model. Upper and lower bounds on capacity are obtained for any channel parameters, and asymptotic expressions are provided in the limit of long packet length and/or large field size. A simple coding scheme is presented that achieves capacity in both limiting cases. The scheme has fairly low decoding complexity and a probability of failure that decreases exponentially both in the packet length and in the field size in bits. Extensions of the scheme are provided for several variations of the channel. A final contribution of this work is to apply rank-metric codes to a closely related problem: securing a network coding system against an eavesdropper. We show that the maximum possible rate can be achieved with a coset coding scheme based on rank-metric codes. Unlike previous schemes, our scheme has the distinctive property of being universal: it can be applied on top of any communication network without requiring knowledge of or any modifications on the underlying network code. In addition, the scheme can be easily combined with a rank-metric-based error control scheme to provide both security and reliability.
4

Manutenção de modelos para controladores preditivos industriais

Francisco, Denilson de Oliveira January 2017 (has links)
O escopo desta dissertação é o desenvolvimento de uma metodologia para identificar os modelos de canais da matriz dinâmica que estejam degradando o desempenho de controladores preditivos, ou MPC (Model Predictive Control), baseado nas técnicas de auditoria e diagnóstico deste tipo de controlador propostas por BOTELHO et al. (2015) e BOTELHO; TRIERWEILER; FARENZENA (2016) e CLARO (2016). A metodologia desenvolvida contempla dois métodos distintos. O primeiro, chamado método direto compensado, tem como base o método direto de identificação em malha fechada (LJUNG, 1987)e compensa cada saída medida do processo de modo a se reter apenas a contribuição do canal que se deseja identificar. O segundo, chamado método do erro nominal, utiliza a definição de saída nominal do processo, proposta por BOTELHO et al. (2015), como métrica para se quantificar o quão próximo o modelo está do comportamento da planta através da minimização do erro nominal. Os métodos foram aplicados ao sistema de quatro tanques cilíndricos (JOHANSSON, 2000) para dois cenários distintos, sendo o primeiro um sistema 2x2 em fase não mínima contendo um MPC trabalhando com setpoint e o segundo um sistema 4x4 em fase mínima com o MPC atuando por faixas. Para o sistema 2x2, se avaliou a influência da localização do canal discrepante (dentro ou fora da diagonal principal da matriz dinâmica de transferência) na eficácia dos métodos. Para o sistema 4x4, o estudo foi voltado para a eficácia dos métodos frentes a controladores que atuam dentro de limites para as variáveis. Os modelos identificados foram comparados pela capacidade de identificar um modelo que capturasse o zero de transmissão da planta e o RGA dinâmico, par ao sistema 2x2, e pelas respostas degrau e diagrama de Bode para o sistema 4x4. O método direto compensado resultou em baixo erro relativo no valor do zero para a discrepância na diagonal principal da matriz dinâmica e alto valor quando a discrepância se encontrava fora da diagonal principal. O método do erro nominal, por sua vez, foi capaz de identificar um modelo cujo zero de transmissão possuía baixo erro relativo frente ao zero da planta em ambos os cenários. No cenário do controlador atuando por faixas, os métodos propostos obtiveram melhores estimativas dos modelos quando comparados com o método concorrente, uma vez que apresentou alto percentual de aderência das saídas simuladas com as saídas medidas. Em todos os cenários estudados, o método do erro nominal se mostrou capaz de identificar um modelo mais robusto, pois este apresentou RGA dinâmico compatível com a planta em todo o range de frequências analisado. / The objective of this dissertation is to develop a method to identify the model for the channel of the dynamic matrix that are affecting the performance of model predictive controllers (MPC), based on the assessment and diagnosis techniques for this type of controller proposed by BOTELHO et al. (2015) e BOTELHO; TRIERWEILER; FARENZENA (2016) and CLARO (2016). The proposed methodology includes two different methods. The first, called the compensated direct method, is based on the closed-loop direct identification method (LJUNG, 1987) and compensates each process measured output in order to retain only the contribution of the channel being identified. The second, called nominal error method, uses the definition of the process nominal output, proposed by BOTELHO et al. (2015), as a metric to quantify how close the model is to the actual plant behavior by minimizing the nominal error. The proposed methods were applied to the quadruple-tank system (JOHANSSON, 2000) for two distinct scenarios, the first being a nonminimum-phase 2x2 system containing a MPC working with setpoint and the second a minimum-phase 4x4 system with the MPC working by ranges. For the 2x2 system, the influence of the model mismatch location (inside or outside the main diagonal of the dynamic transfer matrix) on the effectiveness of the methods was evaluated. For the 4x4 system, the study was focused on the effectiveness of the methods with controllers that operate within limits for the variables. The identified models were compared by the capability of identifying a model with accurate plant transmission zero and dynamic RGA, for the 2x2 system, and by the step responses and Bode diagram for the 4x4 system. The compensated direct method resulted in low relative error in the value of the transmission zero for the model mismatch located in the main diagonal of the dynamic matrix and high relative error when the mismatch was outside the main diagonal. On the other hand, the nominal error method was able to identify a model whose transmission zero had low relative error against the plant zero in both scenarios. In the scenario of a controller working by range, the proposed methods obtained better estimates of the models when compared to the concurrent method, since it presented a high percentage of adherence of the simulated outputs with the measured outputs. In all the studied scenarios, the nominal error method was able to identify a more robust model, since it presented dynamic RGA compatible with the plant in the entire range of analyzed frequencies.
5

Manutenção de modelos para controladores preditivos industriais

Francisco, Denilson de Oliveira January 2017 (has links)
O escopo desta dissertação é o desenvolvimento de uma metodologia para identificar os modelos de canais da matriz dinâmica que estejam degradando o desempenho de controladores preditivos, ou MPC (Model Predictive Control), baseado nas técnicas de auditoria e diagnóstico deste tipo de controlador propostas por BOTELHO et al. (2015) e BOTELHO; TRIERWEILER; FARENZENA (2016) e CLARO (2016). A metodologia desenvolvida contempla dois métodos distintos. O primeiro, chamado método direto compensado, tem como base o método direto de identificação em malha fechada (LJUNG, 1987)e compensa cada saída medida do processo de modo a se reter apenas a contribuição do canal que se deseja identificar. O segundo, chamado método do erro nominal, utiliza a definição de saída nominal do processo, proposta por BOTELHO et al. (2015), como métrica para se quantificar o quão próximo o modelo está do comportamento da planta através da minimização do erro nominal. Os métodos foram aplicados ao sistema de quatro tanques cilíndricos (JOHANSSON, 2000) para dois cenários distintos, sendo o primeiro um sistema 2x2 em fase não mínima contendo um MPC trabalhando com setpoint e o segundo um sistema 4x4 em fase mínima com o MPC atuando por faixas. Para o sistema 2x2, se avaliou a influência da localização do canal discrepante (dentro ou fora da diagonal principal da matriz dinâmica de transferência) na eficácia dos métodos. Para o sistema 4x4, o estudo foi voltado para a eficácia dos métodos frentes a controladores que atuam dentro de limites para as variáveis. Os modelos identificados foram comparados pela capacidade de identificar um modelo que capturasse o zero de transmissão da planta e o RGA dinâmico, par ao sistema 2x2, e pelas respostas degrau e diagrama de Bode para o sistema 4x4. O método direto compensado resultou em baixo erro relativo no valor do zero para a discrepância na diagonal principal da matriz dinâmica e alto valor quando a discrepância se encontrava fora da diagonal principal. O método do erro nominal, por sua vez, foi capaz de identificar um modelo cujo zero de transmissão possuía baixo erro relativo frente ao zero da planta em ambos os cenários. No cenário do controlador atuando por faixas, os métodos propostos obtiveram melhores estimativas dos modelos quando comparados com o método concorrente, uma vez que apresentou alto percentual de aderência das saídas simuladas com as saídas medidas. Em todos os cenários estudados, o método do erro nominal se mostrou capaz de identificar um modelo mais robusto, pois este apresentou RGA dinâmico compatível com a planta em todo o range de frequências analisado. / The objective of this dissertation is to develop a method to identify the model for the channel of the dynamic matrix that are affecting the performance of model predictive controllers (MPC), based on the assessment and diagnosis techniques for this type of controller proposed by BOTELHO et al. (2015) e BOTELHO; TRIERWEILER; FARENZENA (2016) and CLARO (2016). The proposed methodology includes two different methods. The first, called the compensated direct method, is based on the closed-loop direct identification method (LJUNG, 1987) and compensates each process measured output in order to retain only the contribution of the channel being identified. The second, called nominal error method, uses the definition of the process nominal output, proposed by BOTELHO et al. (2015), as a metric to quantify how close the model is to the actual plant behavior by minimizing the nominal error. The proposed methods were applied to the quadruple-tank system (JOHANSSON, 2000) for two distinct scenarios, the first being a nonminimum-phase 2x2 system containing a MPC working with setpoint and the second a minimum-phase 4x4 system with the MPC working by ranges. For the 2x2 system, the influence of the model mismatch location (inside or outside the main diagonal of the dynamic transfer matrix) on the effectiveness of the methods was evaluated. For the 4x4 system, the study was focused on the effectiveness of the methods with controllers that operate within limits for the variables. The identified models were compared by the capability of identifying a model with accurate plant transmission zero and dynamic RGA, for the 2x2 system, and by the step responses and Bode diagram for the 4x4 system. The compensated direct method resulted in low relative error in the value of the transmission zero for the model mismatch located in the main diagonal of the dynamic matrix and high relative error when the mismatch was outside the main diagonal. On the other hand, the nominal error method was able to identify a model whose transmission zero had low relative error against the plant zero in both scenarios. In the scenario of a controller working by range, the proposed methods obtained better estimates of the models when compared to the concurrent method, since it presented a high percentage of adherence of the simulated outputs with the measured outputs. In all the studied scenarios, the nominal error method was able to identify a more robust model, since it presented dynamic RGA compatible with the plant in the entire range of analyzed frequencies.

Page generated in 0.0622 seconds