• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 15
  • 14
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 98
  • 98
  • 42
  • 23
  • 17
  • 16
  • 14
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of run-length limited partial unit memory codes for digital magnetic recording and trellis coded quantisation based on PUM codes

Thayananthan, V. January 1998 (has links)
No description available.
2

Trellis decoding techniques for array codes

Kaya, Lami January 1993 (has links)
No description available.
3

Design of structured nonbinary quasi-cyclic low-density parity-check codes

Liu, Yue, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2009 (has links)
Since the rediscovery, LDPC codes attract a large amount of research efforts. In 1998, nonbinary LDPC codes were firstly investigated and the results shown that they are better than their binary counterparts in performance. Recently, there is always a requirement from the industry to design applied nonbinary LDPC codes. In this dissertation, we firstly propose a novel class of quasi-cyclic (QC) LDPC codes. This class of QC-LDPC codes embraces both linear encoding complexity and excellent compatibility in various degree distributions and nonbinary expansions. We show by simulation results that our proposed QC-LDPC codes perform as well as their comparable counterparts. However, this proposed code structure is more flexible in designing. This feature may show its power when we change the code length and rate adaptively. Further more, we present two algorithms to generate codes with short girth and better girth distribution. The two algorithms are designed based on progressive edge growth (PEG) algorithm and they are specifically designed for quasi-cyclic structure. The simulation results show the improvement they achieved. In this thesis, we also investigate the believe propagation based iterative algorithms for decoding of nonbinary LDPC codes. The algorithms include sum-product (SP) algorithm, SP algorithm using fast Fourier transform, min-sum (MS) algorithm and complexity reduced extended min-sum (EMS) algorithm. In particular, we present the proposed modified min-sum algorithm with threshold filtering which further reduces the computation complexity.
4

Design of structured nonbinary quasi-cyclic low-density parity-check codes

Liu, Yue, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2009 (has links)
Since the rediscovery, LDPC codes attract a large amount of research efforts. In 1998, nonbinary LDPC codes were firstly investigated and the results shown that they are better than their binary counterparts in performance. Recently, there is always a requirement from the industry to design applied nonbinary LDPC codes. In this dissertation, we firstly propose a novel class of quasi-cyclic (QC) LDPC codes. This class of QC-LDPC codes embraces both linear encoding complexity and excellent compatibility in various degree distributions and nonbinary expansions. We show by simulation results that our proposed QC-LDPC codes perform as well as their comparable counterparts. However, this proposed code structure is more flexible in designing. This feature may show its power when we change the code length and rate adaptively. Further more, we present two algorithms to generate codes with short girth and better girth distribution. The two algorithms are designed based on progressive edge growth (PEG) algorithm and they are specifically designed for quasi-cyclic structure. The simulation results show the improvement they achieved. In this thesis, we also investigate the believe propagation based iterative algorithms for decoding of nonbinary LDPC codes. The algorithms include sum-product (SP) algorithm, SP algorithm using fast Fourier transform, min-sum (MS) algorithm and complexity reduced extended min-sum (EMS) algorithm. In particular, we present the proposed modified min-sum algorithm with threshold filtering which further reduces the computation complexity.
5

Codes and trellises

Papadopoulos, Constantinos January 1999 (has links)
No description available.
6

Multifunctional coding investigations for the tactical communications environment

Edwards, Reuben C. January 1998 (has links)
No description available.
7

Adaptive coding algorithms for data transmission

Bate, Stephen Donald January 1992 (has links)
No description available.
8

Studies on error control of 3-D zerotree wavelet video streaming

Zhao, Yi 24 August 2005 (has links)
No description available.
9

Bandwidth-efficient communication systems based on finite-length low density parity check codes

Vu, Huy Gia 31 October 2006
Low density parity check (LDPC) codes are linear block codes constructed by pseudo-random parity check matrices. These codes are powerful in terms of error performance and, especially, have low decoding complexity. While infinite-length LDPC codes approach the capacity of communication channels, finite-length LDPC codes also perform well, and simultaneously meet the delay requirement of many communication applications such as voice and backbone transmissions. Therefore, finite-length LDPC codes are attractive to employ in low-latency communication systems. This thesis mainly focuses on the bandwidth-efficient communication systems using finite-length LDPC codes. Such bandwidth-efficient systems are realized by mapping a group of LDPC coded bits to a symbol of a high-order signal constellation. Depending on the systems' infrastructure and knowledge of the channel state information (CSI), the signal constellations in different coded modulation systems can be two-dimensional multilevel/multiphase constellations or multi-dimensional space-time constellations. In the first part of the thesis, two basic bandwidth-efficient coded modulation systems, namely LDPC coded modulation and multilevel LDPC coded modulation, are investigated for both additive white Gaussian noise (AWGN) and frequency-flat Rayleigh fading channels. The bounds on the bit error rate (BER) performance are derived for these systems based on the maximum likelihood (ML) criterion. The derivation of these bounds relies on the union bounding and combinatoric techniques. In particular, for the LDPC coded modulation, the ML bound is computed from the Hamming distance spectrum of the LDPC code and the Euclidian distance profile of the two-dimensional constellation. For the multilevel LDPC coded modulation, the bound of each decoding stage is obtained for a generalized multilevel coded modulation, where more than one coded bit is considered for level. For both systems, the bounds are confirmed by the simulation results of ML decoding and/or the performance of the ordered-statistic decoding (OSD) and the sum-product decoding. It is demonstrated that these bounds can be efficiently used to evaluate the error performance and select appropriate parameters (such as the code rate, constellation and mapping) for the two communication systems.<p>The second part of the thesis studies bandwidth-efficient LDPC coded systems that employ multiple transmit and multiple receive antennas, i.e., multiple-input multiple-output (MIMO) systems. Two scenarios of CSI availability considered are: (i) the CSI is unknown at both the transmitter and the receiver; (ii) the CSI is known at both the transmitter and the receiver. For the first scenario, LDPC coded unitary space-time modulation systems are most suitable and the ML performance bound is derived for these non-coherent systems. To derive the bound, the summation of chordal distances is obtained and used instead of the Euclidean distances. For the second case of CSI, adaptive LDPC coded MIMO modulation systems are studied, where three adaptive schemes with antenna beamforming and/or antenna selection are investigated and compared in terms of the bandwidth efficiency. For uncoded discrete-rate adaptive modulation, the computation of the bandwidth efficiency shows that the scheme with antenna selection at the transmitter and antenna combining at the receiver performs the best when the number of antennas is small. For adaptive LDPC coded MIMO modulation systems, an achievable threshold of the bandwidth efficiency is also computed from the ML bound of LDPC coded modulation derived in the first part.
10

Bandwidth-efficient communication systems based on finite-length low density parity check codes

Vu, Huy Gia 31 October 2006 (has links)
Low density parity check (LDPC) codes are linear block codes constructed by pseudo-random parity check matrices. These codes are powerful in terms of error performance and, especially, have low decoding complexity. While infinite-length LDPC codes approach the capacity of communication channels, finite-length LDPC codes also perform well, and simultaneously meet the delay requirement of many communication applications such as voice and backbone transmissions. Therefore, finite-length LDPC codes are attractive to employ in low-latency communication systems. This thesis mainly focuses on the bandwidth-efficient communication systems using finite-length LDPC codes. Such bandwidth-efficient systems are realized by mapping a group of LDPC coded bits to a symbol of a high-order signal constellation. Depending on the systems' infrastructure and knowledge of the channel state information (CSI), the signal constellations in different coded modulation systems can be two-dimensional multilevel/multiphase constellations or multi-dimensional space-time constellations. In the first part of the thesis, two basic bandwidth-efficient coded modulation systems, namely LDPC coded modulation and multilevel LDPC coded modulation, are investigated for both additive white Gaussian noise (AWGN) and frequency-flat Rayleigh fading channels. The bounds on the bit error rate (BER) performance are derived for these systems based on the maximum likelihood (ML) criterion. The derivation of these bounds relies on the union bounding and combinatoric techniques. In particular, for the LDPC coded modulation, the ML bound is computed from the Hamming distance spectrum of the LDPC code and the Euclidian distance profile of the two-dimensional constellation. For the multilevel LDPC coded modulation, the bound of each decoding stage is obtained for a generalized multilevel coded modulation, where more than one coded bit is considered for level. For both systems, the bounds are confirmed by the simulation results of ML decoding and/or the performance of the ordered-statistic decoding (OSD) and the sum-product decoding. It is demonstrated that these bounds can be efficiently used to evaluate the error performance and select appropriate parameters (such as the code rate, constellation and mapping) for the two communication systems.<p>The second part of the thesis studies bandwidth-efficient LDPC coded systems that employ multiple transmit and multiple receive antennas, i.e., multiple-input multiple-output (MIMO) systems. Two scenarios of CSI availability considered are: (i) the CSI is unknown at both the transmitter and the receiver; (ii) the CSI is known at both the transmitter and the receiver. For the first scenario, LDPC coded unitary space-time modulation systems are most suitable and the ML performance bound is derived for these non-coherent systems. To derive the bound, the summation of chordal distances is obtained and used instead of the Euclidean distances. For the second case of CSI, adaptive LDPC coded MIMO modulation systems are studied, where three adaptive schemes with antenna beamforming and/or antenna selection are investigated and compared in terms of the bandwidth efficiency. For uncoded discrete-rate adaptive modulation, the computation of the bandwidth efficiency shows that the scheme with antenna selection at the transmitter and antenna combining at the receiver performs the best when the number of antennas is small. For adaptive LDPC coded MIMO modulation systems, an achievable threshold of the bandwidth efficiency is also computed from the ML bound of LDPC coded modulation derived in the first part.

Page generated in 0.0679 seconds