• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 15
  • 14
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 98
  • 98
  • 42
  • 23
  • 17
  • 16
  • 14
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Zero average current error control methods for bidirectional AC-DC converters.

Borle, Lawrence J. January 1999 (has links)
This thesis is concerned primarily with the optimization of the current regulation in bi-directional ac-dc power converters through the use of appropriate current control methods. Following a review into prior current control technology, current control methods which attempt to achieve Zero Average Current Error (ZACE) in each switching period are presented. A ZACE controlled converter offers independent real and reactive power flow control with negligible low order current harmonics, a relatively narrow switching frequency band, and relative immunity to power circuit parameter variations, including DC link or AC line voltage harmonics. ZACE and other desirable characteristics in a current control method are discussed. The single phase ac and dc ripple current is characterized.Two new types of ZACE current control techniques for directly controlling the inductor current in switched power converters are introduced in this thesis together with variations for certain applications. Slope-generated hysteresis (SGH), the first to be developed, is a hysteresis method which uses the slopes of the current error signal alone to generate a hysteresis band which will result in a fixed switching frequency. Slope-generated hysteresis-clock (SGHC) is presented as an alternative with a dual clock to force a narrow switching frequency band.Ramptime current control is the second type of ZACE current control presented. Developed as an improvement over SGH, ramptime produces ZACE in each switching period by using the timing of a previous switching instant relative to the coincident previous current error signal excursion time to determine each switching instant. The digital current error polarity signal is the only variable input required to produce a pwm output.Variations of ramptime current control are also presented. Polarized ramptime is a subset of ramptime which maintains a narrow ++ / switching frequency band despite switching delays. Dual ramptime is the final enhancement of ramptime where two polarized ramptime regulators are used together to provide the appropriate choice between full-bridge and half-bridge switching in a single phase current controlled full-bridge voltage source inverter with the ac ripple current minimized without compromising the transient response. Using this technique, excellent fidelity and a narrow switching frequency band are demonstrated.The ZACE current control techniques are applied to a three phase voltage source inverter. A "standing phase" system of control for a three wire, three phase inverter is chosen over individual phase control since only two current regulators are required to control two decoupled current error signals, and the effective switching frequency is reduced by one third.The new ZACE methods are found to compare favourably in simulation to existing linear and hysteresis type current control techniques. SGH current control has equivalent fidelity to any other hysteresis control in delivering the reference current waveform, but is prone to noise in the hysteresis band determination requiring filtering. This, combined with the effect of switching delays compromises the narrowness of the switching frequency band. SGHC current control is also prone to noise in the generation of the hysteresis band, and results in a decrease in the fidelity of reproduction of the reference waveform. Ramptime current control is a robust technique, largely immune to power circuit parameter and voltage variances, with good fidelity and a relatively narrow switching frequency band. Polarized ramptime current control is shown to produce excellent fidelity with a narrow switching frequency band.The operation of the ZACE methods in single and three phase prototype converters is demonstrated. A field installation of a ++ / grid-connected ramptime current controlled converter is shown to source 20 kW of real power onto the grid from a photovoltaic array with a maximum power point tracking control, while independently providing grid voltage support through reactive power control.The effect of the synchronization of the current regulators on the ac and dc current ripple are presented. Synchronized polarized ramptime regulators are shown to produce the minimum ripple current in simulation and in the prototype operation.ZACE current control techniques, and ramptime and polarized ramptime in particular, are presented as a significant contribution to the control of current in power electronic converters.
32

Turbo Receiver for Spread Spectrum Systems Employing Parity Bit Selected Spreading Sequences

Mirzaee, Alireza 25 January 2012 (has links)
In spread spectrum systems employing parity bit selected spreading sequences, parity bits generated from a linear block encoder are used to select a spreading code from a set of mutually orthogonal spreading sequences. In this thesis, turbo receivers for SS-PB systems are proposed and investigated. In the transmitter, data bits are rst convolutionally encoded before being fed into SS-PB modulator. In fact, the parity bit spreading code selection technique acts as an inner encoder in this system without allocating any transmit energy to the additional redundancy provided by this technique. The receiver implements a turbo processing by iteratively exchanging the soft information on coded bits between a SISO detector and a SISO decoder. In this system, detection is performed by incorporating the extrinsic information provided by the decoder in the last iteration into the received signal to calculate the likelihood of each detected bit in terms of LLR which is used as the input for a SISO decoder. In addition, SISO detectors are proposed for MC-CDMA and MIMO-CDMA systems that employ parity bit selected and permutation spreading. In the case of multiuser scenario, a turbo SISO multiuser detector is introduced for SS-PB systems for both synchronous and asynchronous channels. In such systems, MAI is estimated from the extrinsic information provided by the SISO channel decoder in the previous iteration. SISO multiuser detectors are also proposed for the case of multiple users in MC-CDMA and MIMO-CDMA systems when parity bit selected and permutation spreading are used. Simulations performed for all the proposed turbo receivers show a signi cant reduction in BER in AWGN and fading channels over multiple iterations.
33

Error Control for Network Coding

Silva, Danilo 03 March 2010 (has links)
Network coding has emerged as a new paradigm for communication in networks, allowing packets to be algebraically combined at internal nodes, rather than simply routed or replicated. The very nature of packet-mixing, however, makes the system highly sensitive to error propagation. Classical error correction approaches are therefore insufficient to solve the problem, which calls for novel techniques and insights. The main portion of this work is devoted to the problem of error control assuming an adversarial or worst-case error model. We start by proposing a general coding theory for adversarial channels, whose aim is to characterize the correction capability of a code. We then specialize this theory to the cases of coherent and noncoherent network coding. For coherent network coding, we show that the correction capability is given by the rank metric, while for noncoherent network coding, it is given by a new metric, called the injection metric. For both cases, optimal or near-optimal coding schemes are proposed based on rank-metric codes. In addition, we show how existing decoding algorithms for rank-metric codes can be conveniently adapted to work over a network coding channel. We also present several speed improvements that make these algorithms the fastest known to date. The second part of this work investigates a probabilistic error model. Upper and lower bounds on capacity are obtained for any channel parameters, and asymptotic expressions are provided in the limit of long packet length and/or large field size. A simple coding scheme is presented that achieves capacity in both limiting cases. The scheme has fairly low decoding complexity and a probability of failure that decreases exponentially both in the packet length and in the field size in bits. Extensions of the scheme are provided for several variations of the channel. A final contribution of this work is to apply rank-metric codes to a closely related problem: securing a network coding system against an eavesdropper. We show that the maximum possible rate can be achieved with a coset coding scheme based on rank-metric codes. Unlike previous schemes, our scheme has the distinctive property of being universal: it can be applied on top of any communication network without requiring knowledge of or any modifications on the underlying network code. In addition, the scheme can be easily combined with a rank-metric-based error control scheme to provide both security and reliability.
34

Error Control for Network Coding

Silva, Danilo 03 March 2010 (has links)
Network coding has emerged as a new paradigm for communication in networks, allowing packets to be algebraically combined at internal nodes, rather than simply routed or replicated. The very nature of packet-mixing, however, makes the system highly sensitive to error propagation. Classical error correction approaches are therefore insufficient to solve the problem, which calls for novel techniques and insights. The main portion of this work is devoted to the problem of error control assuming an adversarial or worst-case error model. We start by proposing a general coding theory for adversarial channels, whose aim is to characterize the correction capability of a code. We then specialize this theory to the cases of coherent and noncoherent network coding. For coherent network coding, we show that the correction capability is given by the rank metric, while for noncoherent network coding, it is given by a new metric, called the injection metric. For both cases, optimal or near-optimal coding schemes are proposed based on rank-metric codes. In addition, we show how existing decoding algorithms for rank-metric codes can be conveniently adapted to work over a network coding channel. We also present several speed improvements that make these algorithms the fastest known to date. The second part of this work investigates a probabilistic error model. Upper and lower bounds on capacity are obtained for any channel parameters, and asymptotic expressions are provided in the limit of long packet length and/or large field size. A simple coding scheme is presented that achieves capacity in both limiting cases. The scheme has fairly low decoding complexity and a probability of failure that decreases exponentially both in the packet length and in the field size in bits. Extensions of the scheme are provided for several variations of the channel. A final contribution of this work is to apply rank-metric codes to a closely related problem: securing a network coding system against an eavesdropper. We show that the maximum possible rate can be achieved with a coset coding scheme based on rank-metric codes. Unlike previous schemes, our scheme has the distinctive property of being universal: it can be applied on top of any communication network without requiring knowledge of or any modifications on the underlying network code. In addition, the scheme can be easily combined with a rank-metric-based error control scheme to provide both security and reliability.
35

Turbo Receiver for Spread Spectrum Systems Employing Parity Bit Selected Spreading Sequences

Mirzaee, Alireza 25 January 2012 (has links)
In spread spectrum systems employing parity bit selected spreading sequences, parity bits generated from a linear block encoder are used to select a spreading code from a set of mutually orthogonal spreading sequences. In this thesis, turbo receivers for SS-PB systems are proposed and investigated. In the transmitter, data bits are rst convolutionally encoded before being fed into SS-PB modulator. In fact, the parity bit spreading code selection technique acts as an inner encoder in this system without allocating any transmit energy to the additional redundancy provided by this technique. The receiver implements a turbo processing by iteratively exchanging the soft information on coded bits between a SISO detector and a SISO decoder. In this system, detection is performed by incorporating the extrinsic information provided by the decoder in the last iteration into the received signal to calculate the likelihood of each detected bit in terms of LLR which is used as the input for a SISO decoder. In addition, SISO detectors are proposed for MC-CDMA and MIMO-CDMA systems that employ parity bit selected and permutation spreading. In the case of multiuser scenario, a turbo SISO multiuser detector is introduced for SS-PB systems for both synchronous and asynchronous channels. In such systems, MAI is estimated from the extrinsic information provided by the SISO channel decoder in the previous iteration. SISO multiuser detectors are also proposed for the case of multiple users in MC-CDMA and MIMO-CDMA systems when parity bit selected and permutation spreading are used. Simulations performed for all the proposed turbo receivers show a signi cant reduction in BER in AWGN and fading channels over multiple iterations.
36

Surface Design for Flank Milling

Li, Chenggang January 2007 (has links)
In this dissertation, a numerical method to design a curved surface for accurately flank milling with a general tool of revolution is presented. Instead of using the ruled surface as the design surface, the flank millable surface can better match the machined surface generated by flank milling techniques, and provide an effective tool to the designer to control the properties and the specifications of the design surface. A method using the least squares surface fitting to design the flank millable surface is first discussed. Grazing points on the envelope of the moving tool modeled by the grazing surface are used as the sample points and a NURBS surface is used to approximate the given grazing surface. The deviation between the grazing surface and the NURBS surface can be controlled by increasing the number of the control points. The computation process for this method is costly in time and effort. In engineering design, there is a need for fast and effortless methods to simplify the flank millable surface design procedure. A technique to approximate the grazing curve with NURBS at each tool position is developed. Based on the characteristics of the grazing surface and the geometries of the cutting tool, these NURBS representations at a few different tool positions, namely at the start, interior and end, are lofted to generate a NURBS surface. This NURBS surface represents the grazing surface and is treated as the design surface. Simulation results show that this design surface can accurately match the machined surface. The accuracy of the surface can be controlled by adding control points to the control net of the NURBS surface. A machining test on a 5-axis machine was done to verify the proposed flank millable surface design method. The machined surface was checked on a CMM and the obtained results were compared with the designed flank millable surface. The comparison results show that the machined surface closely matches the design surface. The proposed flank millable surface design method can be accurately used in the surface design.
37

Surface Design for Flank Milling

Li, Chenggang January 2007 (has links)
In this dissertation, a numerical method to design a curved surface for accurately flank milling with a general tool of revolution is presented. Instead of using the ruled surface as the design surface, the flank millable surface can better match the machined surface generated by flank milling techniques, and provide an effective tool to the designer to control the properties and the specifications of the design surface. A method using the least squares surface fitting to design the flank millable surface is first discussed. Grazing points on the envelope of the moving tool modeled by the grazing surface are used as the sample points and a NURBS surface is used to approximate the given grazing surface. The deviation between the grazing surface and the NURBS surface can be controlled by increasing the number of the control points. The computation process for this method is costly in time and effort. In engineering design, there is a need for fast and effortless methods to simplify the flank millable surface design procedure. A technique to approximate the grazing curve with NURBS at each tool position is developed. Based on the characteristics of the grazing surface and the geometries of the cutting tool, these NURBS representations at a few different tool positions, namely at the start, interior and end, are lofted to generate a NURBS surface. This NURBS surface represents the grazing surface and is treated as the design surface. Simulation results show that this design surface can accurately match the machined surface. The accuracy of the surface can be controlled by adding control points to the control net of the NURBS surface. A machining test on a 5-axis machine was done to verify the proposed flank millable surface design method. The machined surface was checked on a CMM and the obtained results were compared with the designed flank millable surface. The comparison results show that the machined surface closely matches the design surface. The proposed flank millable surface design method can be accurately used in the surface design.
38

M-ary Runlength Limited Coding and Signal Processing for Optical Data Storage

Licona-Nunez, Jorge Estuardo 12 April 2004 (has links)
Recent attempts to increase the capacity of the compact disc (CD) and digital versatile disc (DVD) have explored the use of multilevel recording instead of binary recording. Systems that achieve an increase in capacity of about three times that of conventional CD have been proposed for production. Marks in these systems are multilevel and fixed-length as opposed to binary and variable length in CD and DVD. The main objective of this work is to evaluate the performance of multilevel ($M$-ary) runlength-limited (RLL) coded sequences in optical data storage. First, the waterfilling capacity of a multilevel optical recording channel ($M$-ary ORC) is derived and evaluated. This provides insight into the achievable user bit densities, as well as a theoretical limit against which simulated systems can be compared. Then, we evaluate the performance of RLL codes on the $M$-ary ORC. A new channel model that includes the runlength constraint in the transmitted signal is used. We compare the performance of specific RLL codes, namely $M$-ary permutation codes, to that of real systems using multilevel fixed-length marks for recording and the theoretical limits. The Viterbi detector is used to estimate the original recorded symbols from the readout signal. Then, error correction is used to reduce the symbol error probability. We use a combined ECC/RLL code for phrase encoding. We evaluate the use of trellis coded modulation (TCM) for amplitude encoding. The detection of the readout signal is also studied. A post-processing algorithm for the Viterbi detector is introduced, which ensures that the detected word satisfies the code constraints. Specifying the codes and detector for the $M$-ary ORC gives a complete system whose performance can be compared to that of the recently developed systems found in the literature and the theoretical limits calculated in this research.
39

Enhancing the Multimedia Experience in Emerging Networks

Begen, Ali C. 20 November 2006 (has links)
As multimedia processing and networking technologies, products and services evolve, the number of users communicating, collaborating and entertaining over the IP networks is growing rapidly. With the emergence of pervasive and ubiquitous multimedia services, this proliferation creates an abundant increase in the amount of the Internet backbone traffic. This brings the problem of efficient transmission of real-time and time-sensitive media content to the fore. Effective multimedia services demand appropriate application-specific and media-aware solutions, without which the full benefits of such services will not be realized. Poor approaches often lead to system performance degradations such as unacceptable presentation quality perceived by the users, possible network collapses due to the high-bandwidth nature of the multimedia applications, and poor performance observed by other data-oriented applications due to the unresponsiveness of multimedia flows. From a networking perspective, traditional approaches consider the application data as "sacred" and do not differentiate any part of it from the rest. While this keeps the data-delivery mechanisms, namely, the transport-layer protocols, as plain as possible, it also precludes these mechanisms from interpreting the media content and tailoring their actions according to the importance of the content. Given that this naive approach cannot satisfy the specific needs of each and every one of the today's emerging applications ranging from videotelephony to video-on-demand, from distance education to telemedicine, from remote surveillance to online video gaming, the study of Multimedia Transport Protocols (MMTP) is overdue. An MMTP solution basically integrates the multimedia content information into the responsible data-delivery mechanisms along with the requirements of the invoking application and network characteristics to deliver the highest level of service quality. In other words, an MMTP solution offers a unified environment where all cooperating protocol components interact with each other and make the best use of this collaboration to fulfill their respective duties. The focus of this thesis is on the design and evaluation of a set of end-to-end and system-level MMTP solutions for scalable, reliable, and high quality multimedia services in ever-changing, complex and heterogeneous computing and communication environments.
40

Design of Low-Cost Low-Density Parity-Check Code Decoder

Liao, Wei-Chung 06 September 2005 (has links)
With the enormous growing applications of mobile communications, how to reduce the power dissipation of wireless communication has become an important issue that attracts much attention. One of the key techniques to achieve low power transmission is to develop a powerful channel coding scheme which can perform good error correcting capability even at low signal-to-noise ratio. In recent years, the trend of the error control code development is based on the iterative decoding algorithm which can lead to higher coding gain. Especially, the rediscovery of the low-density parity-check code ¡]LDPC¡^has become the most famous code after the introduction of Turbo code since it is the code closest to the well-know Shannon limit. However, since the block size used in LDPC is usually very large, and the parity matrix used in LDPC is quite random, the hardware implementation of LDPC has become very difficult. It may require a significant number of arithmetic units as well as very complex routing topology. Therefore, this thesis will address several design issues of LDPC decoder. First, under no SNR estimation condition, some simulation results of several LDPC architectures are provided and have shown that some architectures can achieve close performance to those with SNR estimation. Secondly, a novel message quantization method is proposed and applied in the design LDPC to reduce to the memory and table sizes as well as routing complexity. Finally, several early termination schemes for LDPC are considered, and it is found that up to 42% of bit node operation can be saved.

Page generated in 0.0514 seconds