41 |
combined Modulation and Error Correction Decoder for TDMR Using Generalized Belief PropagationKhatami, Mehrdad 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / Constrained codes also known as modulation codes are a key component in the digital magnetic recording systems. The constrained codes forbid particular input data patterns which lead to some of the dominant error events or higher media noise. In data recording systems, a concatenated approach toward the constrained code and error-correcting code (ECC) is typically used and the decoding is done independently. In this paper, we show the improvement in combining the decoding of the constrained code and the ECC using generalized belief propagation (GBP) algorithm. We consider the performance of a combined modulation constraints and the ECC on a binary symmetric channel (BSC). We show that combining demodulation and decoding results in a superior performance compared to concatenated schemes. Furthermore, we compute the capacity of the joint ECC and modulation codes for 1-D and 2-D constraints.
|
42 |
Cost-Sensitive Classification Methods for the Detection of Smuggled Nuclear Material in Cargo ContainersWebster, Jennifer B 16 December 2013 (has links)
Classification problems arise in so many different parts of life – from sorting machine parts to diagnosing a disease. Humans make these classifications utilizing vast amounts of data, filtering observations for useful information, and then making a decision based on a subjective level of cost/risk of classifying objects incorrectly.
This study investigates the translation of the human decision process into a mathematical problem in the context of a border security problem: How does one find special nuclear material being smuggled inside large cargo crates while balancing the cost of invasively searching suspect containers against the risk of al lowing radioactive material to escape detection? This may be phrased as a classification problem in which one classifies cargo containers into two categories – those containing a smuggled source and those containing only innocuous cargo. This task presents numerous challenges, e.g., the stochastic nature of radiation and the low signal-to-noise ratio caused by background radiation and cargo shielding.
In the course of this work, we will break the analysis of this problem into three major sections – the development of an optimal decision rule, the choice of most useful measurements or features, and the sensitivity of developed algorithms to physical variations. This will include an examination of how accounting for the cost/risk of a decision affects the formulation of our classification problem.
Ultimately, a support vector machine (SVM) framework with F -score feature selection will be developed to provide nearly optimal classification given a constraint on the reliability of detection provided by our algorithm. In particular, this can decrease the fraction of false positives by an order of magnitude over current methods. The proposed method also takes into account the relationship between measurements, whereas current methods deal with detectors independently of one another.
|
43 |
Error Control for Performance Improvement of Brain-Computer Interface: Reliability-Based Automatic Repeat RequestFURUHASHI, Takeshi, YOSHIKAWA, Tomohiro, TAKAHASHI, Hiromu 06 1900 (has links)
No description available.
|
44 |
Quality of service support with error control protocol in wireless local area networksAmer, Abdelsalam Bubaker 21 July 2010 (has links)
This dissertation discusses some techniques to improve the medium access control in infrastructure multi channel wireless local area networks. Medium Access Control protocols (MAC) coordinate the stations and resolve the channel contentions so that scarce radio resources are shared fairly and efficiently amongst participating users. We propose different models to improve the medium access control performance. The models deal with improving the channel access and allocation. By proposing some backoff strategies for the collided users to
retransmit, the performance is improved. A comparison amongst the proposed models is shown.
We also investigate the quality of service provisioning in infrastructure-based wireless local area networks medium access control. We propose a multiple class traffic model to support quality of service. This model is a cross-layer model as we consider the error in the transmitted state. We also propose models for uplink channel utilizations for data channel transmissions that can be applied to different WLANs. Finally, we propose an integrated model that deals with error in both the request and data transmissions. That model applies in the single class and quality of service support models we develop. In this dissertation, we propose four techniques to improve the medium access control frame utilization by developing four backoff strategies to reduce the collision on the request channels. We propose a cross-layer model for the error control protocol. We propose another model for uplink channel utilization for data transmission in one class of traffic.
We also propose a quality of service support model so high priority users get better performance compared to low priority class traffic. Furthermore, we propose cross-layer design for data transmission to guarantee safe data delivery to the receiver for the QoS model. Finally, we propose a model for uplink channel utilization in the QoS model. This model can be applied to different WLANs standards. This model also includes the channel error in both the request and data channels.
|
45 |
Reliable Approximate Solution of Systems of Delay Volterra Integro-differential EquationsShakourifar, Mohammad 13 August 2013 (has links)
Ordinary and partial differential equations are often derived as a first approximation
to model a real-world situation, where the state of the system depends not only on the
present time, but also on the history of the system. In this situation, a higher level of realism can be achieved by incorporating distributed delays in the mathematical models described by differential equations which results in delay Volterra
integro-differential equations (denoted DVIDEs).
Although DVIDEs serve as indispensable tools for modelling real systems, we still lack efficient and reliable software to approximate the solution of systems of DVIDEs. This thesis is concerned with designing, analyzing and implementing an efficient method to approximate the solution of a general system of neutral Volterra integro-differential
equations with time-dependent delay arguments using a continuous Runge-Kutta (CRK) method. We introduce an adaptive stepsize selection strategy resulting in an approximate solution whose associated defect (residual) satisfies certain properties that allow us to monitor the global error reliably and efficiently. We prove the classic and optimal convergence of the numerical approximation to the exact solution. In addition, a companion system of equations is introduced in order to estimate the mathematical conditioning of the problem. A side effect of introducing this companion system is that it provides an effective estimate of the global error of the approximate solution, at a modest increase in cost.
We have implemented our approach as an experimental Fortran 90 code capable of handling various kinds of DVIDEs with non-vanishing, vanishing, and infinite delay arguments.
|
46 |
Reliable Approximate Solution of Systems of Delay Volterra Integro-differential EquationsShakourifar, Mohammad 13 August 2013 (has links)
Ordinary and partial differential equations are often derived as a first approximation
to model a real-world situation, where the state of the system depends not only on the
present time, but also on the history of the system. In this situation, a higher level of realism can be achieved by incorporating distributed delays in the mathematical models described by differential equations which results in delay Volterra
integro-differential equations (denoted DVIDEs).
Although DVIDEs serve as indispensable tools for modelling real systems, we still lack efficient and reliable software to approximate the solution of systems of DVIDEs. This thesis is concerned with designing, analyzing and implementing an efficient method to approximate the solution of a general system of neutral Volterra integro-differential
equations with time-dependent delay arguments using a continuous Runge-Kutta (CRK) method. We introduce an adaptive stepsize selection strategy resulting in an approximate solution whose associated defect (residual) satisfies certain properties that allow us to monitor the global error reliably and efficiently. We prove the classic and optimal convergence of the numerical approximation to the exact solution. In addition, a companion system of equations is introduced in order to estimate the mathematical conditioning of the problem. A side effect of introducing this companion system is that it provides an effective estimate of the global error of the approximate solution, at a modest increase in cost.
We have implemented our approach as an experimental Fortran 90 code capable of handling various kinds of DVIDEs with non-vanishing, vanishing, and infinite delay arguments.
|
47 |
Turbo Receiver for Spread Spectrum Systems Employing Parity Bit Selected Spreading SequencesMirzaee, Alireza 25 January 2012 (has links)
In spread spectrum systems employing parity bit selected spreading sequences, parity
bits generated from a linear block encoder are used to select a spreading code from
a set of mutually orthogonal spreading sequences. In this thesis, turbo receivers for
SS-PB systems are proposed and investigated. In the transmitter, data bits are rst
convolutionally encoded before being fed into SS-PB modulator. In fact, the parity
bit spreading code selection technique acts as an inner encoder in this system without
allocating any transmit energy to the additional redundancy provided by this technique.
The receiver implements a turbo processing by iteratively exchanging the soft information
on coded bits between a SISO detector and a SISO decoder. In this system,
detection is performed by incorporating the extrinsic information provided by the decoder
in the last iteration into the received signal to calculate the likelihood of each
detected bit in terms of LLR which is used as the input for a SISO decoder.
In addition, SISO detectors are proposed for MC-CDMA and MIMO-CDMA systems
that employ parity bit selected and permutation spreading. In the case of multiuser
scenario, a turbo SISO multiuser detector is introduced for SS-PB systems for both
synchronous and asynchronous channels. In such systems, MAI is estimated from the
extrinsic information provided by the SISO channel decoder in the previous iteration.
SISO multiuser detectors are also proposed for the case of multiple users in MC-CDMA
and MIMO-CDMA systems when parity bit selected and permutation spreading are used.
Simulations performed for all the proposed turbo receivers show a signi cant reduction
in BER in AWGN and fading channels over multiple iterations.
|
48 |
Um injetor de erros aplicado à avaliação de desempenho do codificador de canal em redes IEEE 802.16 / Proposal of an error sequence generator applied to the performance analysis of IEEE 802.16 channel encoderKunst, Rafael January 2009 (has links)
A necessidade de suportar serviços multimídia impulsiona o desenvolvimento das redes sem fio. Com isso, torna-se importante fornecer confiabilidade na transmissão de dados em um ambiente sujeito a variações espaciais, temporais e de freqüência, causadas por fenômenos físicos que, geralmente, causam erros nos dados transmitidos. Esses erros são basicamente de dois tipos: erros em rajada e erros aleatórios (Additive White Gaussian Noise - AWGN). Simular o comportamento dos canais sem fio afetados por erros é objeto de pesquisa há diversos anos. Entretanto, grande parte das pesquisas não considera a aplicação dos dois tipos de erros simultaneamente, o que pode gerar imprecisões nos resultados das simulações. Sendo assim, este trabalho propõe um injetor capaz de gerar tanto seqüências de erros em rajada quanto AWGN, além de propor um modelo de erros híbrido que considera a injeção de ambos os tipos de erros para simular o comportamento de um canal sem fio. O injetor de erros proposto é empregado em um estudo de caso referente à análise de desempenho do mecanismo de codificação de canal em redes que seguem o padrão IEEE 802.16, tanto nomádicas (fixas) quanto móveis. É avaliada a capacidade de correção dos codificadores Forward Error Correction (FEC), de emprego obrigatório de acordo com o referido padrão. Além disso, estuda-se o impacto causado pela aplicação de técnicas que consistem na adição de diversidade temporal à transmissão, em cenários cuja ocorrência dos erros é em rajada, e em cenários cujos erros são modelados de acordo com seqüências AWGN. Finalmente, realiza-se um estudo teórico sobre a vazão que pode ser atingida nos cenários nomádicos e móveis, além de uma discussão sobre os avanços tecnológicos trazidos pela multiplexação de canal baseada em Orthogonal Frequency Division Multiple Access (OFDMA), empregado em redes IEEE 802.16 móveis. / The demand for providing multimedia services is increasing the development of wireless networks. Therefore, an important issue is to guarantee correct transmissions over channels that are affected by time and frequency variant conditions caused by physical impairments that lead to the occurrence of errors during the transmission. These errors are basically of two types: burst errors and random errors, typically modeled as Additive White Gaussian Noise (AWGN). Simulating the behavior of wireless channels affected by physical impairments has been subject of several investigations in the past years. Nevertheless, part of the current researches does not consider the occurrence of both errors at the same time. This approach may lead to imprecisions on the results obtained through simulations. This work proposea an error sequence generator which is able of generating both burst and AWGN error models. Moreover, the proposed model can generate hybrid errors sequences composed of both error types simultaneously. The proposed error sequence generator is applied to a case study that aims to evaluate the performance of the channel encoder of nomadic (fixed) and mobile IEEE 802.16 networks. In this context, we evaluate the error correction capability of FEC encoders which are mandatory according to IEEE 802.16 standard. Furthermore, we study the impact caused by the application of time diversity techniques on the transmission, considering scenarios affected by burst errors and AWGN. We also present a study about the theoretical throughput that can be reached by nomadic and mobile technologies. Finally, we discuss the technological advances brought by Orthogonal Frequency Division Multiple Access (OFDMA) channel multiplexing technique, which is employed in IEEE 802.16 mobile networks.
|
49 |
An algorithm for multi-group two-dimensional neutron diffusion kinetics in nuclear reactor coresSchramm, Marcelo January 2016 (has links)
O objetivo desta tese é introduzir uma nova metodologia para a cinética bidimensional multi- grupo de difusão de nêutrons em reatores nucleares. A metodologia apresentada usa uma aproximação polinomial em um domínio homogêneo retangular com condições de contornos não homogêneas. Como ela consiste em uma série de Taylor truncada, sua estimativa de erro varia de acordo com o tamanho do retângulo. Os coeficientes são obtidos principalmente pelas suas relações com o termo independente, que _e determinado pela equação diferencial. Estas relações são obtidas apenas pelas condições de contorno, e é demonstrado serem linearmente independentes. Um esquema numérico é feito para assegurar uma rápida convergência. Estes procedimentos feitos para um retângulo homogêneo são feitos para construir soluções para problemas de autovalor e dependentes do tempo de geometria ortogonal global com parâmetros seccionalmente constantes pelo método iterativo SOR. O autovalor dominante e sua autofunção são obtidos pelo método da potência no problema de autovalor. A solução para casos dependentes do tempo usam o método de Euler modificado na variável tempo. Quatro casos-teste clássicos são considerados para ilustração. / The objective of this thesis is to introduce a new methodology for two{dimensional multi{ group neutron diffusion kinetics in a reactor core. The presented methodology uses a polyno- mial approximation in a rectangular homogeneous domain with non{homogeneous boundary conditions. As it consists on a truncated Taylor series, its error estimates varies with the size of the rectangle. The coefficients are obtained mainly by their relations with the independent term, which is determined by the differential equation. These relations are obtained by the boundary conditions only, and these relations are proven linear independent. A numerical scheme is made to assure faster convergence. The procedures done for one homogeneous rectangle are used to construct the solution of global orthogonal geometry with step{wise constant parameters steady state and time dependent problems by the iterative SOR algo- rithm. The dominant eigenvalue and its eigenfunction are obtained by the power method in the eigenvalue problem. The solution for the time dependent cases uses the modi ed Euler method in the time variable. Four classic test cases are considered for illustration.
|
50 |
Um injetor de erros aplicado à avaliação de desempenho do codificador de canal em redes IEEE 802.16 / Proposal of an error sequence generator applied to the performance analysis of IEEE 802.16 channel encoderKunst, Rafael January 2009 (has links)
A necessidade de suportar serviços multimídia impulsiona o desenvolvimento das redes sem fio. Com isso, torna-se importante fornecer confiabilidade na transmissão de dados em um ambiente sujeito a variações espaciais, temporais e de freqüência, causadas por fenômenos físicos que, geralmente, causam erros nos dados transmitidos. Esses erros são basicamente de dois tipos: erros em rajada e erros aleatórios (Additive White Gaussian Noise - AWGN). Simular o comportamento dos canais sem fio afetados por erros é objeto de pesquisa há diversos anos. Entretanto, grande parte das pesquisas não considera a aplicação dos dois tipos de erros simultaneamente, o que pode gerar imprecisões nos resultados das simulações. Sendo assim, este trabalho propõe um injetor capaz de gerar tanto seqüências de erros em rajada quanto AWGN, além de propor um modelo de erros híbrido que considera a injeção de ambos os tipos de erros para simular o comportamento de um canal sem fio. O injetor de erros proposto é empregado em um estudo de caso referente à análise de desempenho do mecanismo de codificação de canal em redes que seguem o padrão IEEE 802.16, tanto nomádicas (fixas) quanto móveis. É avaliada a capacidade de correção dos codificadores Forward Error Correction (FEC), de emprego obrigatório de acordo com o referido padrão. Além disso, estuda-se o impacto causado pela aplicação de técnicas que consistem na adição de diversidade temporal à transmissão, em cenários cuja ocorrência dos erros é em rajada, e em cenários cujos erros são modelados de acordo com seqüências AWGN. Finalmente, realiza-se um estudo teórico sobre a vazão que pode ser atingida nos cenários nomádicos e móveis, além de uma discussão sobre os avanços tecnológicos trazidos pela multiplexação de canal baseada em Orthogonal Frequency Division Multiple Access (OFDMA), empregado em redes IEEE 802.16 móveis. / The demand for providing multimedia services is increasing the development of wireless networks. Therefore, an important issue is to guarantee correct transmissions over channels that are affected by time and frequency variant conditions caused by physical impairments that lead to the occurrence of errors during the transmission. These errors are basically of two types: burst errors and random errors, typically modeled as Additive White Gaussian Noise (AWGN). Simulating the behavior of wireless channels affected by physical impairments has been subject of several investigations in the past years. Nevertheless, part of the current researches does not consider the occurrence of both errors at the same time. This approach may lead to imprecisions on the results obtained through simulations. This work proposea an error sequence generator which is able of generating both burst and AWGN error models. Moreover, the proposed model can generate hybrid errors sequences composed of both error types simultaneously. The proposed error sequence generator is applied to a case study that aims to evaluate the performance of the channel encoder of nomadic (fixed) and mobile IEEE 802.16 networks. In this context, we evaluate the error correction capability of FEC encoders which are mandatory according to IEEE 802.16 standard. Furthermore, we study the impact caused by the application of time diversity techniques on the transmission, considering scenarios affected by burst errors and AWGN. We also present a study about the theoretical throughput that can be reached by nomadic and mobile technologies. Finally, we discuss the technological advances brought by Orthogonal Frequency Division Multiple Access (OFDMA) channel multiplexing technique, which is employed in IEEE 802.16 mobile networks.
|
Page generated in 0.0496 seconds