Spelling suggestions: "subject:"costsensitive classification"" "subject:"mostsensitive classification""
1 |
The Effectiveness of a Random Forests Model in Detecting Network-Based Buffer Overflow AttacksJulock, Gregory Alan 01 January 2013 (has links)
Buffer Overflows are a common type of network intrusion attack that continue to plague the networked community. Unfortunately, this type of attack is not well detected with current data mining algorithms. This research investigated the use of Random Forests, an ensemble technique that creates multiple decision trees, and then votes for the best tree. The research Investigated Random Forests' effectiveness in detecting buffer overflows compared to other data mining methods such as CART and Naïve Bayes. Random Forests was used for variable reduction, cost sensitive classification was applied, and each method's detection performance compared and reported along with the receive operator characteristics. The experiment was able to show that Random Forests outperformed CART and Naïve Bayes in classification performance. Using a technique to obtain Buffer Overflow most important variables, Random Forests was also able to improve upon its Buffer Overflow classification performance.
|
2 |
Cost-Sensitive Classification Methods for the Detection of Smuggled Nuclear Material in Cargo ContainersWebster, Jennifer B 16 December 2013 (has links)
Classification problems arise in so many different parts of life – from sorting machine parts to diagnosing a disease. Humans make these classifications utilizing vast amounts of data, filtering observations for useful information, and then making a decision based on a subjective level of cost/risk of classifying objects incorrectly.
This study investigates the translation of the human decision process into a mathematical problem in the context of a border security problem: How does one find special nuclear material being smuggled inside large cargo crates while balancing the cost of invasively searching suspect containers against the risk of al lowing radioactive material to escape detection? This may be phrased as a classification problem in which one classifies cargo containers into two categories – those containing a smuggled source and those containing only innocuous cargo. This task presents numerous challenges, e.g., the stochastic nature of radiation and the low signal-to-noise ratio caused by background radiation and cargo shielding.
In the course of this work, we will break the analysis of this problem into three major sections – the development of an optimal decision rule, the choice of most useful measurements or features, and the sensitivity of developed algorithms to physical variations. This will include an examination of how accounting for the cost/risk of a decision affects the formulation of our classification problem.
Ultimately, a support vector machine (SVM) framework with F -score feature selection will be developed to provide nearly optimal classification given a constraint on the reliability of detection provided by our algorithm. In particular, this can decrease the fraction of false positives by an order of magnitude over current methods. The proposed method also takes into account the relationship between measurements, whereas current methods deal with detectors independently of one another.
|
3 |
Enhancing supervised learning with complex aggregate features and context sensitivity / Amélioration de l'apprentissage supervisé par l'utilisation d'agrégats complexes et la prise en compte du contexteCharnay, Clément 30 June 2016 (has links)
Dans cette thèse, nous étudions l'adaptation de modèles en apprentissage supervisé. Nous adaptons des algorithmes d'apprentissage existants à une représentation relationnelle. Puis, nous adaptons des modèles de prédiction aux changements de contexte.En représentation relationnelle, les données sont modélisées par plusieurs entités liées par des relations. Nous tirons parti de ces relations avec des agrégats complexes. Nous proposons des heuristiques d'optimisation stochastique pour inclure des agrégats complexes dans des arbres de décisions relationnels et des forêts, et les évaluons sur des jeux de données réelles.Nous adaptons des modèles de prédiction à deux types de changements de contexte. Nous proposons une optimisation de seuils sur des modèles à scores pour s'adapter à un changement de coûts. Puis, nous utilisons des transformations affines pour adapter les attributs numériques à un changement de distribution. Enfin, nous étendons ces transformations aux agrégats complexes. / In this thesis, we study model adaptation in supervised learning. Firstly, we adapt existing learning algorithms to the relational representation of data. Secondly, we adapt learned prediction models to context change.In the relational setting, data is modeled by multiples entities linked with relationships. We handle these relationships using complex aggregate features. We propose stochastic optimization heuristics to include complex aggregates in relational decision trees and Random Forests, and assess their predictive performance on real-world datasets.We adapt prediction models to two kinds of context change. Firstly, we propose an algorithm to tune thresholds on pairwise scoring models to adapt to a change of misclassification costs. Secondly, we reframe numerical attributes with affine transformations to adapt to a change of attribute distribution between a learning and a deployment context. Finally, we extend these transformations to complex aggregates.
|
4 |
An Efficient Classification Model for Analyzing Skewed Data to Detect Frauds in the Financial Sector / Un modèle de classification efficace pour l'analyse des données déséquilibrées pour détecter les fraudes dans le secteur financierMakki, Sara 16 December 2019 (has links)
Différents types de risques existent dans le domaine financier, tels que le financement du terrorisme, le blanchiment d’argent, la fraude de cartes de crédit, la fraude d’assurance, les risques de crédit, etc. Tout type de fraude peut entraîner des conséquences catastrophiques pour des entités telles que les banques ou les compagnies d’assurances. Ces risques financiers sont généralement détectés à l'aide des algorithmes de classification. Dans les problèmes de classification, la distribution asymétrique des classes, également connue sous le nom de déséquilibre de classe (class imbalance), est un défi très commun pour la détection des fraudes. Des approches spéciales d'exploration de données sont utilisées avec les algorithmes de classification traditionnels pour résoudre ce problème. Le problème de classes déséquilibrées se produit lorsque l'une des classes dans les données a beaucoup plus d'observations que l’autre classe. Ce problème est plus vulnérable lorsque l'on considère dans le contexte des données massives (Big Data). Les données qui sont utilisées pour construire les modèles contiennent une très petite partie de groupe minoritaire qu’on considère positifs par rapport à la classe majoritaire connue sous le nom de négatifs. Dans la plupart des cas, il est plus délicat et crucial de classer correctement le groupe minoritaire plutôt que l'autre groupe, comme la détection de la fraude, le diagnostic d’une maladie, etc. Dans ces exemples, la fraude et la maladie sont les groupes minoritaires et il est plus délicat de détecter un cas de fraude en raison de ses conséquences dangereuses qu'une situation normale. Ces proportions de classes dans les données rendent très difficile à l'algorithme d'apprentissage automatique d'apprendre les caractéristiques et les modèles du groupe minoritaire. Ces algorithmes seront biaisés vers le groupe majoritaire en raison de leurs nombreux exemples dans l'ensemble de données et apprendront à les classer beaucoup plus rapidement que l'autre groupe. Dans ce travail, nous avons développé deux approches : Une première approche ou classifieur unique basée sur les k plus proches voisins et utilise le cosinus comme mesure de similarité (Cost Sensitive Cosine Similarity K-Nearest Neighbors : CoSKNN) et une deuxième approche ou approche hybride qui combine plusieurs classifieurs uniques et fondu sur l'algorithme k-modes (K-modes Imbalanced Classification Hybrid Approach : K-MICHA). Dans l'algorithme CoSKNN, notre objectif était de résoudre le problème du déséquilibre en utilisant la mesure de cosinus et en introduisant un score sensible au coût pour la classification basée sur l'algorithme de KNN. Nous avons mené une expérience de validation comparative au cours de laquelle nous avons prouvé l'efficacité de CoSKNN en termes de taux de classification correcte et de détection des fraudes. D’autre part, K-MICHA a pour objectif de regrouper des points de données similaires en termes des résultats de classifieurs. Ensuite, calculez les probabilités de fraude dans les groupes obtenus afin de les utiliser pour détecter les fraudes de nouvelles observations. Cette approche peut être utilisée pour détecter tout type de fraude financière, lorsque des données étiquetées sont disponibles. La méthode K-MICHA est appliquée dans 3 cas : données concernant la fraude par carte de crédit, paiement mobile et assurance automobile. Dans les trois études de cas, nous comparons K-MICHA au stacking en utilisant le vote, le vote pondéré, la régression logistique et l’algorithme CART. Nous avons également comparé avec Adaboost et la forêt aléatoire. Nous prouvons l'efficacité de K-MICHA sur la base de ces expériences. Nous avons également appliqué K-MICHA dans un cadre Big Data en utilisant H2O et R. Nous avons pu traiter et analyser des ensembles de données plus volumineux en très peu de temps / There are different types of risks in financial domain such as, terrorist financing, money laundering, credit card fraudulence and insurance fraudulence that may result in catastrophic consequences for entities such as banks or insurance companies. These financial risks are usually detected using classification algorithms. In classification problems, the skewed distribution of classes also known as class imbalance, is a very common challenge in financial fraud detection, where special data mining approaches are used along with the traditional classification algorithms to tackle this issue. Imbalance class problem occurs when one of the classes have more instances than another class. This problem is more vulnerable when we consider big data context. The datasets that are used to build and train the models contain an extremely small portion of minority group also known as positives in comparison to the majority class known as negatives. In most of the cases, it’s more delicate and crucial to correctly classify the minority group rather than the other group, like fraud detection, disease diagnosis, etc. In these examples, the fraud and the disease are the minority groups and it’s more delicate to detect a fraud record because of its dangerous consequences, than a normal one. These class data proportions make it very difficult to the machine learning classifier to learn the characteristics and patterns of the minority group. These classifiers will be biased towards the majority group because of their many examples in the dataset and will learn to classify them much faster than the other group. After conducting a thorough study to investigate the challenges faced in the class imbalance cases, we found that we still can’t reach an acceptable sensitivity (i.e. good classification of minority group) without a significant decrease of accuracy. This leads to another challenge which is the choice of performance measures used to evaluate models. In these cases, this choice is not straightforward, the accuracy or sensitivity alone are misleading. We use other measures like precision-recall curve or F1 - score to evaluate this trade-off between accuracy and sensitivity. Our objective is to build an imbalanced classification model that considers the extreme class imbalance and the false alarms, in a big data framework. We developed two approaches: A Cost-Sensitive Cosine Similarity K-Nearest Neighbor (CoSKNN) as a single classifier, and a K-modes Imbalance Classification Hybrid Approach (K-MICHA) as an ensemble learning methodology. In CoSKNN, our aim was to tackle the imbalance problem by using cosine similarity as a distance metric and by introducing a cost sensitive score for the classification using the KNN algorithm. We conducted a comparative validation experiment where we prove the effectiveness of CoSKNN in terms of accuracy and fraud detection. On the other hand, the aim of K-MICHA is to cluster similar data points in terms of the classifiers outputs. Then, calculating the fraud probabilities in the obtained clusters in order to use them for detecting frauds of new transactions. This approach can be used to the detection of any type of financial fraud, where labelled data are available. At the end, we applied K-MICHA to a credit card, mobile payment and auto insurance fraud data sets. In all three case studies, we compare K-MICHA with stacking using voting, weighted voting, logistic regression and CART. We also compared with Adaboost and random forest. We prove the efficiency of K-MICHA based on these experiments
|
Page generated in 0.1483 seconds