Spelling suggestions: "subject:"matrix off change"" "subject:"matrix oof change""
1 |
A Framework For Measuring The Value-added Of Knowledge Processes With Analysis Of Process Interactions And DynamicsCintron, Jose 01 January 2013 (has links)
The most known and widely used methods use cash flows and tangible assets to measure the impact of investments in the organization’s outputs. But in the last decade many newer organizations whose outputs are heavily dependent on information technology utilize knowledge as their main asset. These organizations’ market values lie on the knowledge of its employees and their technological capabilities. In the current technology-based business landscape the value added by assets utilized for generation of outputs cannot be appropriately measured and managed without considering the role that intangible assets and knowledge play in executing processes. The analysis of processes for comparison and decision making based on intangible value added can be accomplished using the knowledge required to execute processes. The measurement of value added by knowledge can provide a more realistic framework for analysis of processes where traditional cost methods are not appropriate, enabling managers to better allocate and control knowledge-based processes. Further consideration of interactions and complexity between proposed process alternatives can yield answers about where and when investments can improve value-added while dynamically providing higher returns on investment
|
2 |
A Framework for Interoperability on the United States Electric Grid InfrastructureLaval, Stuart 01 January 2015 (has links)
Historically, the United States (US) electric grid has been a stable one-way power delivery infrastructure that supplies centrally-generated electricity to its predictably consuming demand. However, the US electric grid is now undergoing a huge transformation from a simple and static system to a complex and dynamic network, which is starting to interconnect intermittent distributed energy resources (DERs), portable electric vehicles (EVs), and load-altering home automation devices, that create bidirectional power flow or stochastic load behavior. In order for this grid of the future to effectively embrace the high penetration of these disruptive and fast-responding digital technologies without compromising its safety, reliability, and affordability, plug-and-play interoperability within the field area network must be enabled between operational technology (OT), information technology (IT), and telecommunication assets in order to seamlessly and securely integrate into the electric utility's operations and planning systems in a modular, flexible, and scalable fashion. This research proposes a potential approach to simplifying the translation and contextualization of operational data on the electric grid without being routed to the utility datacenter for a control decision. This methodology integrates modern software technology from other industries, along with utility industry-standard semantic models, to overcome information siloes and enable interoperability. By leveraging industrial engineering tools, a framework is also developed to help devise a reference architecture and use-case application process that is applied and validated at a US electric utility.
|
Page generated in 0.0651 seconds