• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude fonctionnelle des sous-domaines de Pcf11 : rôle du 2nd NTD dans la terminaison de transcription des snoRNAs et des motifs liant le zinc dans les activités de maturation de l’extrémité 3’ des ARN messagers. / Functional analysis of Pcf11 sub-domains : role of the 2nd NTD in transcription termination of snoRNAs and zinc finger motifs in 3’-end processing of mRNAs

Guéguéniat, Julia 03 December 2015 (has links)
Chez les eucaryotes, la maturation de l’extrémité 3’ des ARNs messagers a lieu lors de la transcription et regroupe deux étapes : le clivage endonucléolytique du transcrit au niveau d’un site spécifique et l’ajout d’une queue poly(A) sur le fragment en amont du site de clivage. Chez S. cerevisiae, le complexe de polyadénylation est formé par 20 protéines, regroupées principalement en deux sous-complexes : CF IA et CPF. Nous nous intéressons plus spécifiquement à Pcf11, sous-unité du complexe CF IA. Pcf11 est formé de sept sous-domaines, mais la fonction d’une grande partie de la protéine n’est pour l’instant pas connue. Par exemple, aucune fonction n’est associée à la région située entre le domaine d’interaction avec le CTD de l’ARN polymérase II (CID) et une répétion de 20 résidus glutamines. Récemment, la structure de ce domaine, appelé 2nd NTD a été décrite. Pour essayer de comprendre la fonction du 2nd NTD et des motifs liant le zinc encadrant le domaine d’interaction avec Clp1, nous avons mis en place une stratégie systématique de mutagénèse, soit par délétions, soit par mutations ponctuelles. Le 2nd NTD est formé de trois hélices α et interagit avec l’ARN. La délétion de ce domaine conduit à un phénotype de croissance lente chez la levure et un défaut de terminaison de transcription des snoRNAs. Malgré une similarité de structure et de fonction, le 2nd NTD présenterait une fonction indépendante. La fonction des motifs liant le zinc n’est pour l’instant pas connue. Cependant, la mutation de l’un de ces deux motifs conduit à un défaut de clivage et de polyadénylation in vitro. La mutation des deux motifs est létale chez la levure. / In eukaryotes, poly (A) tails are added to nuclear pre-mRNA 3'-ends in the two steps of cleavage and polyadenylation. This co-transcriptional processing requires the activity of a large protein complex comprising at least 20 different polypeptides in yeast organized primarily into the two factors CF IA and CPF. We are interested in the functional characterization of Pcf11, a CF IA subunit. The Pcf11 protein is organized into seven different domains, but here is still a large portion of the polypeptide that has not yet been characterized. For example the region from the end of the CTD interaction domain (CID) to an uninterrupted stretch of 20 glutamine residues has no known function. Recently, the structure of this region, called the 2nd NTD have been characterized. To gain insight into the function of the 2nd NTD and the two zinc fingers motif surrounding the Clp1 interaction domain, we have employed a systematic strategy of mutagenesis, either by deletion or via point mutations. The 2nd NTD is a folded domain composed of three α-helices. The deletion of this domain induced a severe defect of growth in yeast and impaired transcription termination of snoRNAs. Despite its similarity in structure and function with the CID, the 2nd NTD seems to act like an independent RNA binding domain. We don’t know yet the real function of the two zinc fingers motif at the C-terminal region of Pcf11, but the mutation of Cystein residues into serine of one of the two motifs impaired cleavage and polyadenylation. The mutation of the first motif is less harmful than the mutation of the second motif. The simultaneous mutation is lethal in yeast.
2

Régulation de la maturation en 3' des pré-ARNm en réponse aux dommages de l'ADN. / Regulation of Pre-mRNA 3'-end Processing Following DNA Damage

Sfaxi, Rym 12 October 2017 (has links)
La maturation 3’ des pré-ARNm constitue une étape majeure dans la régulation post-transcriptionnelle de l’expression des gènes, indispensable à la stabilité, l’export vers le cytoplasme et la traduction des ARNm. Elle est composée de deux réactions : un clivage à l’extrémité 3’ suivie de l’addition d’une queue poly(A). Des études ont montré que la maturation en 3’ est inhibée en réponse aux dommages de l’ADN. Cependant, la cellule a mis en place des mécanismes compensatoires qui permettent à certains pré-ARNm d’être correctement maturés assurant ainsi le maintien de son intégrité. Les travaux que nous avons menés ont mis en évidence un mécanisme de résistance à l’inhibition de maturation en 3’ du pré-ARNm codant pour le suppresseur de tumeur p53. Ce mécanisme fait intervenir l’hélicase DHX36 qui déplie une structure secondaire appelée G-quadruplexe située en aval du site de clivage. Par ailleurs dans une deuxième étude, nous avons montré que la maturation en 3’ maintenue du pré-ARNm p53 en réponse aux dommages de l’ADN, est découplée du processus de transcription, contrairement au pré-ARNm TBP dont la maturation 3’ est inhibée en réponse aux dommage de l’ADN. Ce découplage a lieu grâce à un clivage co-transcriptionnelle du pré-ARNm p53 au niveau de la chromatine qui entraîne sa libération dans le nucléoplasme où il subit sa maturation en 3’. Une étude à grande échelle nous a permis de montrer que ce mécanisme de maturation en 3’ survenant dans le nucléoplasme est associé au maintien d'une maturation en 3’ efficace en réponse aux dommages de l’ADN. / The 3’-end processing of pre-mRNA, a key step in the post-transcriptional gene expression regulation, is essential for mRNA stability, export and translation. This process is a two-step reaction composed of a cleavage at the 3’-end followed by the addition of a poly(A) tail. Studies have shown that pre-mRNA 3’-end processing is inhibited in response to DNA damage. However, compensatory mechanisms exist to allow some pre-mRNA to be properly processed at their 3’-end in order to maintain cell integrity. For instance, in response to DNA damage, the 3’-end processing of the pre-mRNA coding for the tumor suppressor p53 is able to escape from its inhibition. In the present work, we have shown that the underlying mechanism involves the DHX36 helicase that unwinds a secondary structure called G-quadruplex located downstream of the cleavage site of the p53 pre-mRNA. Moreover, in a second study, we have shown that the maintained p53 pre-mRNA 3’-end processing in response to DNA damage is uncoupled from the transcription process, unlike the inhibited TBP pre-mRNA 3’-end processing. This uncoupling takes place through a co-transcriptional cleavage of p53 pre-mRNA from the chromatin and its release in the nucleoplasm where it undergoes its 3’-end processing. A genome-wide study allowed us to show that the pre-mRNA 3’-end processing occurring in the nucleoplasm is associated with a maintained 3’end processing in response to DNA damage
3

Étude de la maturation de l'extrémité 3' non traduite et de la traduction de l'ARN messager codant pour l'histone H4.

Jaeger, Sophie 25 November 2005 (has links) (PDF)
Les recherches présentées dans ce mémoire ont porté sur l'expression des gènes d'histones de type réplication-dépendants. Ces gènes sont particuliers car leurs ARNm sont dépourvus d'introns et de queue poly A en 3', l'extrémité 3' étant générée par coupure endonucléolytique au cours d'un processus de maturation original impliquant plusieurs protéines et la snRNP U7.<br /> Lors d'une première étude, nous avons étudié l'étape initiale de la réaction de maturation qui consiste en la fixation de la protéine HBP sur une structure de l'ARN pré-messager. À partir de mutants de HBP abolissant la fixation sur l'ARN nous avons sélectionné par la technique du triple hybride dans la levure des suppresseurs intragéniques permettant de restaurer cette fixation. La plupart des mutations isolées se situaient dans les domaines N- et C-terminaux de la protéine, en dehors du domaine central impliqué dans l'interaction avec l'ARN. Cette restauration s'effectuait sans perte de spécificité pour la séquence de fixation à l'ARN, suggérant que les domaines N- et C-terminaux sont impliqués dans le processus de reconnaissance de l'ARN.<br /> Dans un second volet de notre étude portant sur la réaction de maturation de l'extrémité 3' de l'ARNm d'histone, nous avons examiné l'impact structural induit par la protéine HBP lors de sa fixation sur les extrémités 3' non traduites des ARNs pré-messagers des histones H4-12, H1t et H2a-614. En utilisant les techniques de sondage en solution nous avons montré que ces extrémités présentent de fortes structures secondaires qui pourraient empêcher l'accès à la particule snRNP U7. Puis, nous avons montré que la fixation de la protéine HBP engendrait des changements de conformation de l'ARN au niveau de la séquence d'hybridation au snRNA U7. Enfin, nous avons pu montrer que ces changements de conformation étaient associés à une amélioration de l'ancrage du snRNA U7 à l'ARN pré-messager. Cependant, ce mécanisme n'est pas généralisable à l'ensemble des gènes d'histones puisque aucune modification importante n'a pu être détectée à l'extrémité 3' non traduite du gène d'histone H2a-614.<br />Enfin, nous avons étudié la traduction in vitro de l'ARNm H4-12 et montré qu'elle s'effectuait de façon très efficace en l'absence des régions 5' et 3' non codantes, suggérant que l'initiation de la traduction s'effectuerait par recrutement des ribosomes à l'intérieur de la phase codante. Par sondage en solution de l'ARNm entier, nous avons proposé un modèle de repliement secondaire dans lequel la séquence codante est circularisée par l'hybridation de ses extrémités. À l'aide d'ARNs anti-sens nous avons identifié un certain nombre de nucléotides essentiels pour le maintien d'une haute efficacité de traduction. L'ensemble des résultats obtenus lors des expériences de sondage en solution associés à ceux issus des études de traduction in vitro, de « toe print » et de microscopie électronique, ont conduit à l'établissement d'un modèle original permettant d'expliquer la traduction atypique de l'ARNm H4-12. La phase codante recruterait directement deux ribosomes à la manière de 2 sites d'entrée interne du ribosome ou « IRES ». Le premier ribosome serait recruté au niveau du codon d'initiation, le second près de la fin de la phase codante. Par le jeu de changements de conformation et grâce à la circularisation de l'ARNm, le deuxième ribosome pourrait être dirigé très efficacement sur le codon d'initiation. Cet enchaînement des deux ribosomes sur la phase codante permettrait d'expliquer d'une part, la grande efficacité de traduction observée dans le cas de notre modèle H4-12 et d'autre part, le rôle accessoire des séquences non traduites.

Page generated in 0.1067 seconds