Spelling suggestions: "subject:"dhx36"" "subject:"cx36""
1 |
Investigation de la spécificité nucléotidique de l’hélicase DHX36 lors du déroulement de structures d’ARN G-quadruplex.Rainville Sirois, Julien January 2016 (has links)
La déstabilisation des structures G-quadruplex au niveau des acides nucléiques a des répercussions physiologiques importantes. L’accentuation des connaissances concernant les processus cellulaires associés au métabolisme des structures des G4 est primordiale. Une panoplie d’hélicases à G4 est impliquée dans le métabolisme des structures G4, notamment l’hélicase humaine DHX36. Il a été déterminé au préalable par certains groupes de recherche que l’hélicase DHX36 se lie à son substrat l’ARN G4 et utilise des nucléosides triphosphates afin de catalyser le dépliement de la structure G-quadruplex. Toutefois, l’interaction avec l’ARN G4 a été sommairement caractérisée et la spécificité nucléotidique n’a toujours pas été évaluée. Ainsi, nous avons décidé d’approfondir les connaissances du mécanisme de dépliement de la structure du G4 d’ARN par l’hélicase DHX36. Notamment, en évaluant la thermodynamique de l’interaction entre l’hélicase et l’ARN G4 afin de révéler particulièrement l’efficacité de liaison mais également en évaluant la spécificité nucléotidique de l’hélicase DHX36 afin d’effectuer le dépliement de l’ARN G4. La combinaison des analogues de nucléotides et le modèle structural permettent de révéler les caractéristiques structurales et fonctionnelles de l’interaction entre l’hélicase humaine DHX36 et l’ATP. Nos analyses permettent de constater que l’enzyme DHX36 est en mesure d’utiliser autant l’ATP que GTP afin de dérouler les structures G4 d’ARN ayant, par contre, une spécificité accrue pour la molécule d’ATP.
|
2 |
INVESTIGATIONS INTO THE ROLES OF PKR-INDUCED ANTIVIRAL STRESS GRANULE AND DHX36 IN RIG-I SIGNALING / PKRによって誘導される抗ウイルスストレス顆粒とRIG-IによるシグナルにおけるDHX36の機能の研究Yoo, Ji Seung 23 May 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(生命科学) / 甲第18485号 / 生博第314号 / 新制||生||41(附属図書館) / 31363 / 京都大学大学院生命科学研究科統合生命科学専攻 / (主査)教授 藤田 尚志, 教授 米原 伸, 教授 朝長 啓造 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
|
3 |
Régulation de la maturation en 3' des pré-ARNm en réponse aux dommages de l'ADN. / Regulation of Pre-mRNA 3'-end Processing Following DNA DamageSfaxi, Rym 12 October 2017 (has links)
La maturation 3’ des pré-ARNm constitue une étape majeure dans la régulation post-transcriptionnelle de l’expression des gènes, indispensable à la stabilité, l’export vers le cytoplasme et la traduction des ARNm. Elle est composée de deux réactions : un clivage à l’extrémité 3’ suivie de l’addition d’une queue poly(A). Des études ont montré que la maturation en 3’ est inhibée en réponse aux dommages de l’ADN. Cependant, la cellule a mis en place des mécanismes compensatoires qui permettent à certains pré-ARNm d’être correctement maturés assurant ainsi le maintien de son intégrité. Les travaux que nous avons menés ont mis en évidence un mécanisme de résistance à l’inhibition de maturation en 3’ du pré-ARNm codant pour le suppresseur de tumeur p53. Ce mécanisme fait intervenir l’hélicase DHX36 qui déplie une structure secondaire appelée G-quadruplexe située en aval du site de clivage. Par ailleurs dans une deuxième étude, nous avons montré que la maturation en 3’ maintenue du pré-ARNm p53 en réponse aux dommages de l’ADN, est découplée du processus de transcription, contrairement au pré-ARNm TBP dont la maturation 3’ est inhibée en réponse aux dommage de l’ADN. Ce découplage a lieu grâce à un clivage co-transcriptionnelle du pré-ARNm p53 au niveau de la chromatine qui entraîne sa libération dans le nucléoplasme où il subit sa maturation en 3’. Une étude à grande échelle nous a permis de montrer que ce mécanisme de maturation en 3’ survenant dans le nucléoplasme est associé au maintien d'une maturation en 3’ efficace en réponse aux dommages de l’ADN. / The 3’-end processing of pre-mRNA, a key step in the post-transcriptional gene expression regulation, is essential for mRNA stability, export and translation. This process is a two-step reaction composed of a cleavage at the 3’-end followed by the addition of a poly(A) tail. Studies have shown that pre-mRNA 3’-end processing is inhibited in response to DNA damage. However, compensatory mechanisms exist to allow some pre-mRNA to be properly processed at their 3’-end in order to maintain cell integrity. For instance, in response to DNA damage, the 3’-end processing of the pre-mRNA coding for the tumor suppressor p53 is able to escape from its inhibition. In the present work, we have shown that the underlying mechanism involves the DHX36 helicase that unwinds a secondary structure called G-quadruplex located downstream of the cleavage site of the p53 pre-mRNA. Moreover, in a second study, we have shown that the maintained p53 pre-mRNA 3’-end processing in response to DNA damage is uncoupled from the transcription process, unlike the inhibited TBP pre-mRNA 3’-end processing. This uncoupling takes place through a co-transcriptional cleavage of p53 pre-mRNA from the chromatin and its release in the nucleoplasm where it undergoes its 3’-end processing. A genome-wide study allowed us to show that the pre-mRNA 3’-end processing occurring in the nucleoplasm is associated with a maintained 3’end processing in response to DNA damage
|
4 |
Biophysical investigation of G-quadruplex recognition by the N-terminal construct of RNA helicase associated with AU-rich element (RHAU)Marushchak, Oksana 06 December 2013 (has links)
G-quadruplexes, characterized by stacked G-tetrad rings held together by Hoogsteen hydrogen bonds, have been visualized in human cells and implicated in transcriptional and translational control, telomere maintenance and disease. RHA Helicase associated with AU-rich element (RHAU), a DEAH-box helicase, is a major G-quadruplex resolvase in human cell lysates. It binds G-quadruplexes through the RHAU specific motif in its N-terminus. In order to investigate the recognition of G-quadruplexes by helicases, the binding between the N-terminal construct of RHAU, RHAU53-105, and the DNA analog of the quadruplex formed by the 5’ terminus of human telomerase RNA component, hTR1-20, was investigated in a comprehensive biophysical approach followed by crystallization screening. RHAU53-105, hTR1-20 DNA and their complexes were analysed by gel electrophoresis, UV-visible spectroscopy, spectropolarimetry, dynamic light scattering and small angle X-ray scattering (SAXS). The findings reveal that hTR1-20 DNA, separated in two conformations by size exclusion chromatography in the presence of potassium cations, assumes a disk-like parallel G-quadruplex secondary structure in solution. Far-UV circular dichroism spectra and SAXS demonstrate that RHAU53-105 assumes an extended (Dmax = 7.8 nm , rG = 2.1 (±0.2) nm) and ordered conformation in solution. The analysis confirms the binding between RHAU53-105 and each conformation of the hTR1-20 DNA quadruplex. Circular dichroism spectra indicate the retention of quadruplex secondary structure in both RHAU53-105•hTR1-20 DNAc1 and RHAU53-105•hTR1-20 DNAc2 complexes. This analysis provides some insight into the interaction between G-quadruplexes and the N-terminal domain of RHAU and identifies 0.2 M sodium formate, 20 % (w/v) polyethylene glycol 3350 and 1.5 M sodium chloride, 10 % (v/v) ethanol as preliminary conditions for crystallization of the complex of RHAU53-105 and hTR1-20 DNAc2. / October 2014
|
Page generated in 0.0357 seconds