• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 11
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural Basis of Viral RNA Recognition by RIG-I-Like Receptors

Lu, Cheng 2012 August 1900 (has links)
RIG-I-like receptors (RLRs), RIG-I, MDA5, and LGP2, are a family of innate immune receptors that recognize viral RNA in the cytoplasm and initiate antiviral responses including the induction of type I interferons and other pro-inflammatory cytokines. All three proteins have both an RNA helicase domain with ATPase activity and a C-terminal domain (CTD) which is responsible for RNA binding. RIG-I and MDA5 also have two tandem caspase activation and recruitment domains (CARDs) at the N-terminus which are involved in downstream signaling. To understand the structural basis of viral RNA recognition by the RLRs, especially RIG-I, we have performed extensive biochemical studies to determine the binding properties of RIG-I with different forms of RNA, including dsRNA with and without 5'-triphosphate (5'-ppp) groups, and 5'-ppp ssRNA. RIG-I CTD binds to these forms of RNA, and exhibits the highest affinity for 5'-ppp dsRNA. We also determined the crystal structures of RIG-I CTD in complex with dsRNA with and without 5'-ppp by X-ray crystallography. The structures showed that RIG-I recognizes the termini of the dsRNA and interacts with the two types of RNA in different orientations. By comparing these complex structures together with mutagenesis studies, we conclude that RIG-I CTD is a versatile binding module capable of recognizing different RNA ligands. Similar but partially differing sets of residues are involved in the recognition of dsRNA with and without 5'-ppp. Mutations of key residues at the RNA binding surface also abolished RIG-I signaling in cells. In order to compare the RIG-I/RNA interactions with other RLRs, we also determined the dsRNA binding surface of MDA5 CTD by NMR titration studies. MDA5 CTD has a similar binding surface to that of RIG-I CTD, however with slightly different surface electrostatic potentials which indicate different interactions with RNA. This may explain how MDA5 senses differing types of viruses compared to RIG-I. The current RIG-I activation model suggests that after stimulation by RNA binding, RIG-I undergoes an ATP-dependent conformational change, exposing the CARDs for downstream signaling. To understand the critical role that the helicase domain plays in RIG-I activation by structural approach, we also attempted to crystallize the dsRNA-bound helicase domain together with CTD.
2

RNA Recognition by the Pattern Recognition Receptor RIG-I: Roles of RNA Binding, Multimerization, and RNA-dependent ATPase Activity

DeLaney, Elizabeth Erin 02 September 2014 (has links)
No description available.
3

Identification and characterization of the RIG-I helicase partners involved in the balance proliferation / cell differentiation. Characterization of G-quadruplex resolving by the helicase Pif1 in Bacteroides sp 3_1_23. / Identification et caractérisation des interactants de l'hélicase RIG-I impliquée dans la balance prolifération/différentiation cellulaire. Caractérisation du déroulement du G-quadruplex par l'hélicase Pif1 dans Bacteroides sp 3_1_23.

Areny naves, Cel 02 March 2018 (has links)
Les hélicases sont des protéines qui utilisent l'énergie fournie par l'hydrolyse de l'ATP ou du GTP pour catalyser la disjonction des doubles hélices d'ADN ou d'ARN. Cette activité de déroulement de double brin leur confère un rôle essentiel dans le métabolisme des acides nucléiques, le maintien de la stabilité du génome et les processus de signalisation cellulaire. En conséquence, ils sont impliqués dans des processus aussi divers que le vieillissement, l'apparition de cancers, l'immunité innée. Cette thèse est axée sur la compréhension de la fonction et des mécanismes moléculaires de deux hélicases différentes et le manuscrit est donc divisé en deux parties. Le premier est dédié à l'hélicase RIG-I, une hélicase à ARN, exprimée lorsque les cellules leucémiques cessent de proliférer et sont induites à se différencier en granulocytes, indispensables à la reconnaissance de l'ARN double brin des virus, initiant la protection des cellules contre la réplication des génomes viraux. Le mécanisme d'action de RIG-I est bien décrit dans le contexte d'une infection virale. Mais dans le cas de la différenciation des cellules myéloïdes, l'intervention de RIG-I et son rôle dans la balance la prolifération / différenciation restent incomplets. En effet, les interactions RIG-I en particulier avec les ligands cellulaires ne sont pas totalement comprises. La première partie de mon travail consistait à tenter d'isoler et de caractériser les partenaires de RIG-I lors de la différenciation des cellules leucémiques NB4. La seconde est consacrée à l'étude des mécanismes sous-jacents aux G-quadruplexes résolus par les hélicases. Plusieurs questions subsistent quant aux interactions entre la structure particulière des G-quadruplexes et ces enzymes. Une hélicase de Bacteroides sp 3_1_23, BsPif1, a été choisie pour comparer et caractériser l'interaction entre les G-quadruplexes et l'ADN canonique de Watson-Crick. Dans les deux parties du travail, les interactions ont été étudiées par des techniques biochimiques utilisant soit une lignée cellulaire ou une protéine purifiée et des acides nucléiques synthétiques. / Helicases are proteins that utilize the energy provided by the hydrolysis of ATP or GTP to catalyse the disjunction of double DNA or RNA helices. This double strand unwinding activity gives them an essential role in the metabolism of nucleic acids, the maintenance of the genome stability and cell signalling processes. As a result, they are involved in processes as diverse as aging, the appearance of cancers, innate immunity. This thesis is focused on the understanding of the function and the molecular mechanisms of two different helicases and the manuscript is therefore divided in two parts. The first one is dedicated to the RIG-I helicase, an RNA helicase, expressed when leukemic cells stop proliferate and are induced to differentiate in granulocytes, which are essential in the recognition of double-stranded RNA of viruses, initiating the protection of the cells against the replication of the viral genomes. The mechanism of action of RIG-I is well described in the context of viral infection. But in the case of the differentiation of myeloid cells, the intervention of RIG-I and its influence on the equilibrium proliferation / differentiation remains incomplete. Indeed, RIG-I interactions in particular with cellular ligands are not fully understood. The first part of my work consisted in an attempt to isolate and characterize RIG-I partners during differentiation of NB4 leukemic cells. The second one is devoted to the study of mechanisms underlying G-quadruplexes resolving by helicases. Several questions remain about the interactions between the particular structure of G-quadruplexes and these enzymes. A Bacteroides sp 3_1_23 helicase, BsPif1, was chosen to compare and characterize the interaction between G-quadruplexes and canonical Watson-Crick DNA. In the two parts of the work, the interactions were investigated by biochemical techniques using either a cell line or purified protein and synthetic nucleic acids.
4

Regulation of antiviral responses by RIG-I dissociation from dsRNA / dsRNAからのRIG-I解離による抗ウイルス反応の調節

Im, Jung Hyun 24 November 2023 (has links)
京都大学 / 新制・課程博士 / 博士(生命科学) / 甲第24984号 / 生博第513号 / 新制||生||68(附属図書館) / 京都大学大学院生命科学研究科統合生命科学専攻 / (主査)教授 野田 岳志, 教授 朝長 啓造, 教授 今吉 格 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
5

Negative Feedback Regulation of RIG-I-mediated Antiviral Signaling by Aichi Virus

Lin, You-Sheng 10 September 2012 (has links)
Aichi virus (AiV) is a small, nonenveloped RNA virus categorized to Picornaviridae. AiV infection causes mild gastroenteritis, but in neonates, AiV usually causes the risk of certain enterovirus-related clinical syndromes, such as fever, nausea, vomiting and diarrhea. The first case of AiV infection in Taiwan was diagnosed from a young patient with diarrhea in Kaohsiung Veterans General Hospital, and the AiV was successfully isolated. Antiviral innate immune system of our body plays the major role to defense virus invasion. Because AiV is an emerging picornavirus, the knowledge about its pathogenesis and the interaction with host innate immunity were totally absent. This study aims to investigate the mechanism of AiV regulating innate immune response. We first demonstrated that AiV is a type I IFN sensitive virus. IFN-£\2 treatment potently inhibited AiV replication. Real-time quantitative PCR data indicated that AiV induced only small amout of type I IFN gene expression, and the similar result was observed using IFN-£] luciferase reporter assay. In addition, the AiV triggered IFN-£] luciferase activity was progressively decreased in the late phase of infection. Immunoblotting assay showed that AiV evidently activated IRF-3 and IRF-7, the transcription factors of type I IFN induction. However, the retinoic acid inducible gene I (RIG-I) protein was cleavaged and its activity was downregulated by AiV. This data suggested that AiV triggered low level of type I IFN response may due to the negative feedback regulation of RIG-I activity. This immune evasion might be important for AiV replication in cells. Our study first reveals the status of innate immune response of AiV infection, and provides the basic virological theory for the development of anti-AiV drugs and vaccines in the future.
6

Chemical and Cellular Defenses against Foreign Pathogens

Lin, Xiaonan 07 September 2012 (has links)
Bacterial and viral infections affect billions of people each year. While bacterial infections are treated by the use of antibiotics, viral infections are eradicated by the immune system. This thesis comprises two parts. Part I presents the reconstitution of enzymes required for the synthesis of the minimal pharmacophore of moenomycin A (MmA), a molecule with antibacterial activity. Part II details single-particle electron microscopy studies of MDA5 alone and in complex with double-stranded RNA (dsRNA). MmA is a natural product antibiotic from Streptomyces ghanaensis that possesses remarkable potency against clinically relevant Gram-positive bacteria. MmA exerts its antibacterial activity by binding directly to peptidoglycan glycosyltransferases, enzymes involved in the synthesis of the glycan strands of peptidoglycan. The genes responsible for MmA biosynthesis have been identified, and a complete biosynthetic pathway has been proposed. Part I of this thesis describes the reconstitution of enzymes required for the synthesis of two trisaccharide scaffolds of MmA that retain antibacterial activity. It also describes the synthesis of unnatural phosphoglycerate lipid acceptors and UDP-amino sugars that can be used to probe the substrate tolerances of key glycosyltransferases in MmA biosynthesis. This work lays the foundation for the synthesis of unnatural MmA analogs that may possess better pharmacokinetic properties than the parent molecule. MDA5 is a helicase that detects viral dsRNA in the cytoplasm of vertebrate cells. Upon dsRNA recognition, MDA5 initiates a series of signal transduction events that activate the innate immune response. Part II of this thesis presents the structures of apo MDA5 protein and the MDA5-dsRNA complex obtained by using single-particle electron microscopy. Two-dimensional averages of apo MDA5 revealed that the protein is very flexible and can adopt multiple conformations. This finding suggests that MDA5 does not adopt an autorepressed conformation in the absence of viral dsRNA. When MDA5 is incubated with dsRNA, the protein assembles onto the dsRNA to form a linear oligomer. Two-dimensional averages and a three-dimensional reconstruction reveal the complex to consist of seven to eight stacked discs per strand of 112 base pair dsRNA. This work lays the foundation for further structural studies aimed at elucidating the mechanism by which MDA5 is activated. / Chemistry and Chemical Biology
7

INVESTIGATIONS INTO THE ROLES OF PKR-INDUCED ANTIVIRAL STRESS GRANULE AND DHX36 IN RIG-I SIGNALING / PKRによって誘導される抗ウイルスストレス顆粒とRIG-IによるシグナルにおけるDHX36の機能の研究

Yoo, Ji Seung 23 May 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(生命科学) / 甲第18485号 / 生博第314号 / 新制||生||41(附属図書館) / 31363 / 京都大学大学院生命科学研究科統合生命科学専攻 / (主査)教授 藤田 尚志, 教授 米原 伸, 教授 朝長 啓造 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM
8

Induction d’une réponse immunitaire anti-tumorale par un régime pauvre en protéines / Low protein diet induced anti-cancer immune response

Bossowski, Józef Piotr 06 December 2018 (has links)
Plusieurs arguments de la littérature suggèrent l’importance de l’alimentation dans le développement tumoral et l’efficacité des traitements anti-cancereux. Dans différents modèles animaux, la restriction calorique (CR) supprime la prolifération des cellules tumorales et les sensibilise aux thérapies ciblées. Par conséquent, des approches non-pharmacologiques comme la restriction calorique ont un intérêt grandissant en clinique. Considérant l’addiction des cellules tumorales aux nutriments, nous nous sommes demandé quels macronutriments pouvaient avoir des propriétés anticancéreuses. A partir d’un modèle murin de lymphomes B (modèle transgénique Eµ-Myc) nous avons testé l’impact de deux régimes alimentaires : l’un pauvre en glucides (Low CHO, 25% de réduction en glucides) et l’autre pauvre en protéines (Low PROT, 25% de réduction en protéines). Des souris syngéniques C57BL/6 ont été injectées par voie intraveineuse avec des cellules primaires Eμ-Myc. Malgré un apport alimentaire équivalent entre les groupes, nous avons observé que le régime pauvre en protéines augmente la survie globale des souris C57BL/6 développant un lymphome B Eµ-Myc. De manière intéressante, nous avons démontré que cet effet pro-survie est dépendant du système immunitaire. En effet, la déplétion des cellules T CD8+ ou l’utilisation d’un modèle murin immunodéficient NSG (NOD-SCID il2rγ), empêche l’effet bénéfique du régime pauvre en protéines sur le développement tumoral. Nous avons reproduit et étendu nos observations en utilisant des lignées modèles de cancéreuses colorectaux (CT26) et de mélanome (B16) injectée dans des souris syngéniques, immunocompétente. Les cellules tumorales étant fortement dépendantes des nutriments, nous avons émis l’hypothèse qu’un régime pauvre en protéines pourrait induire un stress du réticulum endoplasmique (RE) dans ces dernières. En effet, nous avons observé une augmentation des protéines impliquées dans la signalisation du RE : CHOP et sXBP1. Par conséquent, nous avons traité les souris nourries en régime pauvre en protéines avec deux inhibiteurs du stress du RE : TUDCA, inhibiteur générique et MKC4485 qui cible l’activité ribonucléase d’IRE1. Dans les deux cas, ces inhibiteurs ont bloqué l’effet du régime faible en protéines sur le développement tumoral et l’infiltration des T CD8+ au sein de la tumeur. Pour s’affranchir, des potentiels effets secondaires des inhibiteurs chimiques, nous avons invalidé IRE1 dans la lignée CT26 et nous avons obtenus des résultats similaires, démontrant que la voie IRE1 dans les cellules tumorales est une voie centrale dans la réponse immunitaire anticancéreuse induite par un régime pauvre en protéines. En outre, nous avons découvert que l’activation de RIG-I est un événement en aval de l’activation d’IRE1 et que, par analyse bio-informatique nous avons pu corréler une signature IRE1 à une infiltration immunitaire élevée et à une immunogénicité accrue du cancer chez les patients atteints de mélanome, glioblastome et cancer colorectal. De ce fait, nous avons démontré que la réponse du système immunitaire induite par un régime pauvre en protéines est une conséquence de l’activation accrue de IRE1 dans les cellules cancéreuses. / Several arguments from the literature suggested the importance of diets in cancer development and in the efficacy of anti-cancer therapies. Calorie restriction (CR) suppresses cancer growth in various animal models and sensitizes tumor cells to targeted therapies (Meynet & Ricci, 2014). Thus, non-pharmacologic approaches such as CR have a growing interest in the clinic. Considering the nutrient addiction of cancer cells, we wondered which specific macronutrients contribute the most to anti-cancer effects. Therefore, we tested the reduction in specific macronutrient without decrease in general calorie intake on tumor development. We used two diets: reduced in carbohydrates (Low CHO, -25% carbohydrates) and diet reduced in protein (Low PROT, -25% proteins) on the Eµ-Myc transgenic mouse model of B-cell lymphoma. Syngeneic C57BL/6 mice were intravenously injected with primary Eμ-Myc cells. We observed that low PROT-diet, in spite of equal calorie intake among the groups, resulted in increase of the overall survival of Eµ-Myc-bearing C57BL/6 mice. Very importantly, we established that this pro-survival effect is immune system-dependent as both depletion of CD8+ T cells and use of immunodeficient NSG (NOD-SCID il2rγ) mouse model prevented the beneficial effect of the low PROT-diet on the tumor development. We reproduced and further extended our observations using subcutaneous injection of CT26 colorectal cancer cells in syngeneic immunocompetent BALB/c mice and B16 melanoma in C57BL/6 mice. As tumor cells are highly dependent on nutrients, we speculated that low PROT diet could induce ER stress in tumor cells. Indeed, we observed increase in proteins implicated in ER stress signaling – CHOP and sXBP1. Therefore, we treated low PROT-diet fed mice with two ER stress inhibitors, the general inhibitor TUDCA or MKC4485, which targets IRE1 RNAse activity. In both cases, inhibitors significantly prevented the effect of the Low PROT-diet on tumor development and on intratumoral number of CD8+ T cells. To eliminate any side effects of chemical inhibitors, we invalidated IRE1 in CT26 cells and obtained similar results, demonstrating that IRE1 signaling in tumor cells is a central event in the low PROT-diet induced anti-cancer immune response. In addition, we have uncovered RIG-I activation as a downstream event of IRE1 activation and by bioinformatic analysis correlated high-IRE1 signature with high immune infiltration and enhanced immunogenicity of cancer in patients bearing melanoma, glioblastoma and colorectal cancer. Hence, we have shown that the immune system response elicited under a Low PROT diet is a consequence of increased IRE1 activation in cancer cells.
9

Principes moléculaires du mécanisme d'activation du récepteur de l'immunité innée RIG-I / Molecular basis of the activation of the cell innate immune receptor RIG-I

Louber, Jade 08 November 2013 (has links)
Lors d'une infection virale, l'hôte déclenche une réponse rapide, la rémonse immunitaire innée, dont l'interféron (IFN) de type I est la cytokine centrale. Des motifs moléculaires associés aux micro-organismes (MAMP) sont déteectés par de nombreux récepteurs dédiés, dont les récepteurs cytoplasmiques de type RIG-I (RLR) identifiés à partir de 2004. Les RLR, au nombre de trois, RIG-I, MAD5 et LGP2, sont les ARN-hélicases composées de deux ou trois types de domaines : deux domaines CARD, resposables du recrutement de la cascade de signalisation, un domaine C-terminal CTD, site de liaison initial de l'ARN viral, et le domaine central hélicase, site secondaire de liaison àl'ARN et possédant également une activité enzymatiques ATP-dépendante. RIG-I est impliqué dans la détection de plusieurs virus dont ceux de l'ordre des mononegavirales (virus de la rage, de la rougeole, Ebola). Ce récepteur reconnait des ARN viraux possédant une région double brin adjacente à une extrémité 5'-triphosphate. Les nombreuses études menées n'ont cepnedant pas encore permis de dégager un mécanisme complet et cohérent de l'activation de RIG-I. Notre objectif était donc d'apporter des réponses molécualires quant au mécanismes d'activation de RIG-I. Dans un premier temps, l'élucidation de la structure de la protéine entière RIG-I de canard, par l'équipe de Stephen Cusack, leur a permis d'identifier une conformation auto-réprimée de la protéine. En l'absence d'ARN le domaine CARD2 interagit avec le sous domaine Hel2i du domaine hélicase. Nous avons apporté une preuve fonctionelle de cette observation. Les mutations F540 A/D, du résidu situé dans le sous domaine Hel2i, inhibent l'interaction CARD2-Hel2i et produisent des mutant constituvement actifs. A l'opposé, les mutations correspondantes dans le domaine CARD2 rendent RIG-I inactif. L'interaction CARD2-Hel2i semble donc impliquer une double auto-répression via (i) le masquage du site de liaison à l'ARN du sous-domaine Hel2i, et (ii) le masquage de résidus du domaine CARD2 impliqués dans le recrutement d'intermédiaires requis pour la transduction du signal. Par ailleurs, l'étude de mutants impliqués dans la liaison et l'hydrolyse de l'ATP nous a permis de proposer un nouveau rôle régulateur pour cette activité enzymatique. Dans un deuxième temsp, l'étude de la nécessité de l'oligomérisation de RIG-I pour l'activation de la réponse IFN a été menée. Eva Kowalinski, en thèse dans l'équipe de Stephen Cusack, n'observe la formation de dimères de RIG-I, in vitro, qu'en présence d'un ARN synthétique possédant deux extrémités 5'-triphosphate. Nous avons complété cette observation avec des analyse montrant que des ARN synthéttiques leader incapables d'induire la dimérisation de RIG-I in viro, activent néanmoins ce récepteur in cellula. Par ailleurs, nim'utilisation de la technique de co-immunoprécipitation, ni celle du test de complémentation basé sur la luciférase Gaussia, avec ou sans activiation par un ARN ou une infection virale, n'ont permis d'observer d'oligomérisation de RIG-I. L'auto-association de RIG-I ne semble donc pas être indispensable pour son activation. / Vertebrate are permanently threatened by infections that they manage to counteract using a dedicated system. The innate immunity allows a rapid response against viral infection, mainly through the type I interferon (IFN) production. Dedicated receptors detect microbe-associated molecular patterns (MAMPs), and among them the RIG-likereceptors (RLRs), RIG-I, MDA5 and LGP2, can sense viral RNA into the cytoplasm. RLRs are compossed of two or three different domains : two N-terminal CARDs domains are resposible for signal transduction, a C-terminal domains is the first RNA binding site, and a central helicase domainis the second RNA binding site and possesses an ATP-dependent activity. RIG-I is important for sensing of several mononegavirales, such as rabies, measle and Ebola viruses, and recongnized 5'-triphosphorylated double stranded RNA. Despite intensive studies, a full and comprehensive model of the mechanismof RIG-I activation is still lacking. Our aim was to clarify the first molecular steps of RIG-I activation. First, Stephen Cusack's team elucidated the structure of the full lenght duck RIG-I protein and identified the principle of RIG-I auto-repressed conformation. In absence of ligand RNA, CARD2 domain interacts with Hel2i subdomain of helicase domain. We confirmed this conformation with functional evidence. Mutaions F540A/D, in Hel2i subdomain, inhibits CARD2:Hel2i interaction and renders RIG-I constitutively active. In contrast, the corresponding mutations in the Hel2i contacting site of CARD2 domain produce inactive mutants. Thus CARDS;Hel2i interactio induces an auto-repressed state through a deual masking of both Hel2i RNA binding site and CARD2 residus necessary for signal transduction. Moreover, study of mutants involved in ATP binding and hydrolysis reealed a portential unsuspected regulatory role for the ATP-dependent enzymatic activity of RIG-I. Second, we studied the necessity of RIG-I oligomerization for RIG-I activation. Eva Kowalinski, PhD student in Stephen Cusack's team, observed RIG-I dimers in vitro, only in presence of synthetic RNA with two 5'triphosphorylated ends. We complete this observation with functional assays showing that synthetic leader RNA incapable to induce RIG-I oligomerization in vitro, did activate RIG-I in cellula. Moreover, we did not observe RIG-I oligomerization using either co-immunoprecipitation or Gaussia Luciferase-based-protein complementation assay, after activation with cognate RNA or viral infection. Altogether our results indicate that the self-oligomerization og RIG-I is either dispensable or very transient for signal transduction.
10

L’étude de l’impact des protéines non structurales NS1 et NS2 du virus respiratoire syncitial sur la réponse immunitaire innée

Yoboua, Fabrice Aman 04 1900 (has links)
Le virus respiratoire syncytial (RSV) est un virus à ARN de polarité négative. Les études démontrent que toute la population sera infectée par ce virus au moins deux fois avant l’âge de 3 ans. Le RSV peut provoquer plusieurs pathologies respiratoires telles que la bronchiolite aiguë et la pneumonie. Les infections sévères corrèlent avec le développement de l’asthme. Lors d’une infection virale, les particules du RSV sont détectées par le senseur RIG-I qui induit l’activation des facteurs de transcription NF-κB et IRF-3. Respectivement, les facteurs de transcription activeront les réponses inflammatoire et antivirale. Au coeur des pathologies induites par le RSV se trouve une réponse immunitaire mal adaptée. Plus précisément, par l’entremise de NF-κB, le RSV provoque une production exagérée de cytokines et chimiokines qui induisent une réponse inflammatoire démesurée provoquant du dommage tissulaire. Paradoxalement, le RSV est capable d’échapper à la réponse antivirale. Ces deux phénomènes sont contrôlés par l’entremise des protéines non structurales NS1 et NS2. Le mécanisme délimitant le mode d’action de NS1 et NS2 sur la réponse antivirale reste à être déterminé. Avec pour objectif d’élucider comment NS1 et NS2 inhibent la réponse antivirale, nous avons investigué le mécanisme de reconnaissance de l’hôte vis-à-vis de RSV. Nous démontrerons, pour la première fois, que le senseur cytosolique MDA5 est impliqué dans la réponse antivirale contre le RSV. Nous présenterons des résultats préliminaires qui suggèrent que le rôle de MDA5 est non redondant à RIG-I. À l’aide d’ARN interférant dirigé contre RIG-I et de transfection de MDA5, nous démontrerons que MDA5 ne contribue pas à la phosphorylation d’IRF-3, mais plutôt qu’elle régit la stabilité du facteur de transcription. Nous démontrerons aussi que, contrairement à l’hypothèse actuelle sur le fonctionnement de NS1 et NS2, l’inhibition de ces derniers ne provoque pas une augmentation de la cytokine antivirale IFN−β. Cependant, l’expression ectopique de NS1 et NS2 réduit l’activité du promoteur de l’IFN-β et de la protéine cytoplasmic antivirale ISG56 lorsqu’elle est mesurée par essai luciférase. / Respiratory Syncytial Virus (RSV) is a RNA virus with negative polarity. RSV infections are the most common cause of hospitalization among infants. Among populations at risk, infection of RSV can be quite severe. RSV infections can cause bronchiolitis, pneumonia, while severe infections are linked to the development of asthma. Early in the infectious cycle of RSV, the cytosolic sensor RIG-I captures viral particles, and activates the immune response by engaging the transcription factors IRF-3 and NF-κB. At the heart of RSV mediated pathologies is a skewed immune response. More precisely, RSV over stimulates the release of proinflammatory chemokines and cytokines. Intriguingly, while RSV is able to stimulate the production of proinflammatory cytokines and chemokines, RSV under stimulates the antiviral response. The ability of RSV to evade the antiviral response is thought to be mediated by its non-structural proteins: NS1 and NS2. However, the mechanism by which NS1 and NS2 enable RSV to evade the antiviral response remains to be determined. In this memoir we investigated, how RSV is recognized by the innate immune response in airway epithelial cells. With this information we hope to improve our understanding of how NS1 and NS2 allow RSV to circumvent the antiviral response. We show for the first time that cytosolic sensor MDA5 plays a role in the recognition of RSV particles. Using a combination of interfering RNA directed against RIG-I, and transfection of MDA5, we show that MDA5 does not contribute to the phosphorylation of IRF-3. According to the data presented, we suggest that MDA5’s role in the immune response is to prevent the degradation of IRF-3. Contrary to previous research, we show that the inhibition of the nonstructural protein does not increase the production of the antiviral cytokine IFN-β. However, the ectopic expression of NS1 and NS2 does lead to a reduction of the promoter activity of IFN-β and the antiviral protein ISG56 when measured by luciferase assay. This research highlights the importance of MDA5 as a potential therapeutic target in the development of a cure for RSV.

Page generated in 0.409 seconds