• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expected Maximum Drawdowns Under Constant and Stochastic Volatility

Nouri, Suhila Lynn 04 May 2006 (has links)
The maximum drawdown on a time interval [0, T] of a random process can be defined as the largest drop from a high water mark to a low water mark. In this project, expected maximum drawdowns are analyzed in two cases: maximum drawdowns under constant volatility and stochastic volatility. We consider maximum drawdowns of both generalized and geometric Brownian motions. Their paths are numerically simulated and their expected maximum drawdowns are computed using Monte Carlo approximation and plotted as a function of time. Only numerical representation is given for stochastic volatility since there are no analytical results for this case. In the constant volatility case, the asymptotic behavior is described by our simulations which are supported by theoretical findings. The asymptotic behavior can be logarithmic for positive mean return, square root for zero mean return, or linear for negative mean return. When the volatility is stochastic, we assume it is driven by a mean-reverting process, in which case we discovered that if one uses the effective volatility in the formulas obtained for the constant volatility case, the numerical results suggest that similar asymptotic behavior holds in the stochastic case.

Page generated in 0.0475 seconds