• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Maximum entropy regularization for calibrating a time-dependent volatility function

Hofmann, Bernd, Krämer, Romy 26 August 2004 (has links) (PDF)
We investigate the applicability of the method of maximum entropy regularization (MER) including convergence and convergence rates of regularized solutions to the specific inverse problem (SIP) of calibrating a purely time-dependent volatility function. In this context, we extend the results of [16] and [17] in some details. Due to the explicit structure of the forward operator based on a generalized Black-Scholes formula the ill-posedness character of the nonlinear inverse problem (SIP) can be verified. Numerical case studies illustrate the chances and limitations of (MER) versus Tikhonov regularization (TR) for smooth solutions and solutions with a sharp peak.
2

Maximum entropy regularization for calibrating a time-dependent volatility function

Hofmann, Bernd, Krämer, Romy 26 August 2004 (has links)
We investigate the applicability of the method of maximum entropy regularization (MER) including convergence and convergence rates of regularized solutions to the specific inverse problem (SIP) of calibrating a purely time-dependent volatility function. In this context, we extend the results of [16] and [17] in some details. Due to the explicit structure of the forward operator based on a generalized Black-Scholes formula the ill-posedness character of the nonlinear inverse problem (SIP) can be verified. Numerical case studies illustrate the chances and limitations of (MER) versus Tikhonov regularization (TR) for smooth solutions and solutions with a sharp peak.
3

Magnetic field effects in chemical systems

Rodgers, Christopher T. January 2007 (has links)
Magnetic fields influence the rate and/or yield of chemical reactions that proceed via spin correlated radical pair intermediates. The field of spin chemistry centres around the study of such magnetic field effects (MFEs). This thesis is particularly concerned with the effects of the weak magnetic fields B₀ ~ 1mT relevant in the ongoing debates on the mechanism by which animals sense the geomagnetic field and on the putative health effects of environmental electromagnetic fields. Relatively few previous studies have dealt with such weak magnetic fields. This thesis presents several new theoretical tools and applies them to interpret experimental measurements. Chapter 1 surveys the development and theory of spin chemistry. Chapter 2 introduces the use of Tikhonov and Maximum Entropy Regularisation methods as a new means of analysing MARY field effect data. These are applied to recover details of the diffusive motion of reacting pyrene and N,N-dimethylaniline radicals. Chapter 3 gives a fresh derivation and appraisal of an approximate, semiclassical approach to MFEs. Monte Carlo calculations allow the elucidation of several "rules of thumb" for interpreting MFE data. Chapter 4 discusses recent optically-detected zero-field EPR measurements, adapting the gamma-COMPUTE algorithm from solid state NMR for their interpretation. Chapter 5 explores the role of RF polarisation in producing MFEs. The breakdown in weak fields of the familiar rotating frame approximation is analysed. Chapter 6 reviews current knowledge and landmark experiments in the area of animal magnetoreception. The origins of the sensitivity of European robins Erithacus rubecula to the Earth’s magnetic field are given particular attention. In Chapter 7, Schulten and Ritz’s hypothesis that avian magnetoreception is founded on a radical pair mechanism (RPM) reaction is appraised through calculations in model systems. Chapter 8 introduces quantitative methods of analysing anisotropic magnetic field effects using spherical harmonics. Chapter 9 considers recent observations that European robins may sometimes be disoriented by minuscule RF fields. These are shown to be consistent with magnetoreception via a radical pair with no (effective) magnetic nuclei in one of the radicals.

Page generated in 0.1637 seconds