Spelling suggestions: "subject:"mcur"" "subject:"mcr""
31 |
Mapping Genes Affecting Phenotypic Traits in ChickenKerje, Susanne January 2003 (has links)
The purpose of gene mapping is to understand the underlying genetics of simple and complex traits like plumage colour and growth. This thesis is based on a cross between the wild ancestor of the modern chicken, the red junglefowl, and a White Leghorn line selected for high egg mass. There are obvious phenotypic differences between these two breeds in several aspects such as growth, egg production and behaviour. These complex traits are often influenced by a number of genes or Quantitative Trait Loci (QTL) as well as environmental factors. Identification of QTL regions involves testing of association between genetic markers and the phenotype of interest. The QTL identified in this study explain most of the difference in adult body weight between the red junglefowl and the White Leghorn, but less of the difference at earlier age. By applying a different method for detection of QTL, including gene interactions, epistasis, we can understand more of the genetics behind early growth. The allele coming from the red junglefowl is generally associated with lower weight, egg production and food consumption. In this study we have also identified two genes explaining the difference in plumage colour in the cross. The Extension locus, encoded by the melanocortin receptor 1 (MC1R), controls the amount of pigment produced has shown to be associated with plumage colour. A mutation in the MC1R gene causes black pigmentation of the plumage. We have also found association between the PMEL17 gene, known to be involved in normal pigmentation, and the Dominant white phenotype present in the White Leghorn. After comparison of sequences from different alleles at the Dominant white locus, amino acid alteration caused by insertion and deletion in the transmembrane region of the PMEL17 protein has been revealed. These mutations are associated with alleles representing different plumage colour variants.
|
32 |
Design, Synthesis, and Biological Evaluation of Melanocortin-1-Receptor Agonists for the Prevention of Skin CancerRUWE, ANDREW R. 24 September 2008 (has links)
No description available.
|
33 |
Regulation of UV-Protective Pathways Downstream of the Melanocortin 1 Receptor in MelanocytesWolf Horrell, Erin M. 01 January 2016 (has links)
Malignant cutaneous melanoma is the deadliest form of skin cancer, and a majority of melanoma diagnoses are a result of exposure to ultraviolet (UV) radiation. UV radiation causes DNA damage, which if not repaired correctly via nucleotide excision repair (NER) can result in mutations and melanomagenesis. The melanocortin 1 receptor (MC1R) is a Gs protein coupled receptor located on melanocyte plasma membranes and is involved in protecting the skin from UV induced damage. MC1R signaling results in the activation of two protective pathways: 1) induction of eumelanin synthesis downstream of micropthalmia-associated transcription factor (MITF) and 2) acceleration of NER downstream of ataxia telangiectaseia mutated and Rad3 related (ATR). MC1R signaling, however, also promotes melanocyte proliferation, therefore, the activation of the MC1R pathway must be regulated. The overall hypothesis of this dissertation is that the pathways downstream of MC1R can be manipulated to protect against UV induced damage.
Chapter 2 investigates the regulation of the MC1R neutral antagonist human β-defensin 3 (βD3). UV damage did not induce βD3 mRNA expression in ex vivo human skin explants. The induction of βD3 expression instead correlated with inflammatory cytokines including TNF.
Chapter 3 investigates the interdependence and cross talk between the two protective pathways downstream of MC1R. We directly tested the effect of MITF on the acceleration of NER and the effect of ATR on the induction of eumelanin synthesis following MC1R activation. MITF was not required for the acceleration of NER as mediated by ATR, however, the induction of transcription of enzymes involved in eumelanin synthesis was dependent upon ATR kinase activity.
Finally, Chapter 4 investigates the mechanism by which MC1R promoted proliferation and whether the two UV protective pathways downstream of MC1R could be selectively activated without the risk of melanocyte proliferation. MC1R signaling resulted in activation of the mechanistic target of rapamycin complex 1 (mTORC1), a major regulator of cell growth and proliferation. Inhibition of mTORC1 signaling via rapamycin prevented MC1R induced proliferation in vitro. Rapamycin, however, did not prevent MC1R induced eumelanin synthesis or the acceleration of NER in vitro or in vivo suggesting it is possible to selectively activate the beneficial signaling pathways without the risk of melanocyte proliferation.
The results of this dissertation suggest that MC1R signaling could be augmented in individuals to prevent UV induced damage.
|
34 |
Local Anesthetic Efficacy of the Inferior Alveolar Nerve Block in Red-haired FemalesDroll, Brock A. 15 December 2011 (has links)
No description available.
|
Page generated in 0.0403 seconds