• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Synthesis of Substituted 1,4-Hydrazine-linked Piperazine-2,5- and 2,6-diones and 2,5-Terpyrimidinylenes as α-Helical Mimetics

Anderson, Laura 08 July 2009 (has links)
The most common secondary structure of proteins is the alpha-helix. The alpha-helix can be involved in various protein-protein interactions (PPIs) through the recognition of three or more side chains along one face of the alpha-helix (Wells and McClendon, 2007). In recent years, there has been an increasing interest in the development of peptidic and non-peptidic compounds that bind to PPI surfaces. We focused on the design and synthesis of compounds that mimic the orientation of side chain residues of an alpha-helical protein domain. Although our scaffolds could potentially inhibit various PPIs, we focused mainly on the disruption of interactions among the Bcl-2-family of proteins and the Mdm-2-family of proteins to favor apoptosis in cancer cells. A summary of Bcl-2 and Mdm-2 structure and function relationships that focuses on the possibility of using peptidic and non-peptidic alpha-helical mimics as PPI inhibitors is described in Chapter One. Chapter Two discusses the design and synthesis of 3-substituted-2,6- and 2,5-piperazinedione oligomers as more hydrophilic scaffolds compared to previously reported alpha-helical mimetics (Yin, et al., 2005). A key feature of this design is the linkage of the units by a hydrazine bond. While we were able to prepare several monomers containing the hydrazine linkage, synthesis of the dimers and trimers is very challenging. Due to the difficulty of synthesizing oligomeric piperazine-diones in practical yields, we next focused on the design and synthesis of novel 2,5-terpyrimidinylene scaffolds as an alternative to obtain alpha-helical mimetics; this is discussed in Chapter Three. The main outcome of this project was the efficient preparation of a "first-generation" non-peptidic compound library via a facile iterative synthesis enabled by the key conversion of 5-cyanopyrimidine to 5-carboxamidine. Chapter Three also discusses our progress towards the synthesis of structurally similar substituted-2,5-terpyrimidinylenes, but with more drug-like properties as determined by QikProp calculations. Chapter Four describes an independent study on the synthesis of a guanidine derivative as an alkylating agent for the synthesis of cysteine peptide nucleic acids, CPNA, which is another current project in our lab.
2

Cell cycle control and its modulation in HPV infected cells

Lyman, Rachel C. January 2010 (has links)
A key effect of human papillomavirus (HPV) infection is to disrupt the normal cell cycle in order to subvert the cellular DNA replication machinery. Morphologically, condylomata induced by high and low risk HPV types cannot be distinguished and many studies have shown that the pattern of viral gene expression is similar in condylomata caused by both high risk and low risk HPV types. Detailed morphological study of cell cycle protein expression has not previously been performed on condylomata infected with low risk HPV types. The findings presented suggest that the mechanisms employed by low risk HPV6 or HPV11 to subvert cellular functions in condylomata acuminata are similar to those employed by high risk HPVs, with the exception of cyclin D1 and p53 protein over-expression. The differences in p53 expression and cyclin D1 expression seen between high and low risk HPV infection, reflect the known differences between high and low risk types and are in agreement with the known differences between high risk and low risk E6 and E7 proteins. PHK transduction studies demonstrated HPV E6 and E7 induce changes in cell cycle protein expression and that there are differences in cell cycle abrogation between HPV6 and HPV16. Disruption of the p53-MDM2 interaction can lead to activation of the p53 pathway. HPV infected lesions almost always contain wild-type p53. The binding of HPV E6 to p53, and its subsequent targeting for degradation, prevents activation of the p53 pathway in HPV infected cells. Cells over expressing HPV genes were treated with Nutlin-3, a MDM2-small molecule antagonist. The findings presented suggest treatment with Nutlin-3 induces cell cycle arrest in cells expressing HPV16 E7 and HPV6 E6 and HPV6 E7. This suggests a potential role for Nutlin-3 in the treatment of HPV infected cells.
3

mdm2 Amplification in NIH3T3L1 Preadipocytes Leads to Mdm2 Elevation in Terminal Adipogenesis

Litteral, Vaughn 23 July 2008 (has links)
No description available.

Page generated in 0.0169 seconds