• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanoindentation in situ a Transmission Electron Microscope

Johnson, Lars January 2007 (has links)
<p>The technique of Nanoindentation <em>in situ</em> Transmission Electron Microscope has been implemented on a Philips CM20. Indentations have been performed on Si and Sapphire (<em>α-Al</em><em>2</em><em>O</em><em>3</em>) cut from wafers; Cr/Sc multilayers and <em>Ti</em><em>3</em><em>SiC</em><em>2</em> thin films. Different sample geometries and preparation methods have been evaluated. Both conventional ion and Focused Ion Beam milling were used, with different ways of protecting the sample during milling. Observations were made of bending and fracture of samples, dislocation nucleation and dislocation movement. Basal slip was observed upon unloading in Sapphire. Dislocation movement constricted along the basal planes were observed in <em>Ti</em><em>3</em><em>SiC</em><em>2</em>. Post indentation electron microscopy revealed kink formation in <em>Ti</em><em>3</em><em>SiC</em><em>2</em> and layer rotation and slip across layers in Cr/Sc multilayer stacks. Limitations of the technique are presented and discussed.</p>
2

Nanoindentation in situ a Transmission Electron Microscope

Johnson, Lars January 2007 (has links)
The technique of Nanoindentation in situ Transmission Electron Microscope has been implemented on a Philips CM20. Indentations have been performed on Si and Sapphire (α-Al2O3) cut from wafers; Cr/Sc multilayers and Ti3SiC2 thin films. Different sample geometries and preparation methods have been evaluated. Both conventional ion and Focused Ion Beam milling were used, with different ways of protecting the sample during milling. Observations were made of bending and fracture of samples, dislocation nucleation and dislocation movement. Basal slip was observed upon unloading in Sapphire. Dislocation movement constricted along the basal planes were observed in Ti3SiC2. Post indentation electron microscopy revealed kink formation in Ti3SiC2 and layer rotation and slip across layers in Cr/Sc multilayer stacks. Limitations of the technique are presented and discussed.

Page generated in 0.1378 seconds