Spelling suggestions: "subject:"mechanistic.empirical pavement design"" "subject:"mechanichemical pavement design""
1 |
Evaluation of the Effects of Canadian Climatic Conditions on Pavement Performance using the Mechanistic Empirical Pavement Design GuideSaha, Jhuma Unknown Date
No description available.
|
2 |
AN INNOVATIVE APPROACH TO MECHANISTIC EMPIRICAL PAVEMENT DESIGNGraves, Ronnie Clark, II 01 January 2012 (has links)
The Mechanistic Empirical Pavement Design Guide (MEPDG) developed by the National Cooperative Highway Research Program (NCHRP) project 1-37A, is a very powerful tool for the design and analysis of pavements. The designer utilizes an iterative process to select design parameters and predict performance, if the performance is not acceptable they must change design parameters until an acceptable design is achieved.
The design process has more than 100 input parameters across many areas, including, climatic conditions, material properties for each layer of the pavement, and information about the truck traffic anticipated. Many of these parameters are known to have insignificant influence on the predicted performance
During the development of this procedure, input parameter sensitivity analysis varied a single input parameter while holding other parameters constant, which does not allow for the interaction between specific variables across the entire parameter space. A portion of this research identified a methodology of global sensitivity analysis of the procedure using random sampling techniques across the entire input parameter space. This analysis was used to select the most influential input parameters which could be used in a streamlined design process.
This streamlined method has been developed using Multiple Adaptive Regression Splines (MARS) to develop predictive models derived from a series of actual pavement design solutions from the design software provided by NCHRP. Two different model structures have been developed, one being a series of models which predict pavement distress (rutting, fatigue cracking, faulting and IRI), the second being a forward solution to predict a pavement thickness given a desired level of distress. These thickness prediction models could be developed for any subset of MEPDG solutions desired, such as typical designs within a given state or climatic zone. These solutions could then be modeled with the MARS process to produce am “Efficient Design Solution” of pavement thickness and performance predictions. The procedure developed has the potential to significantly improve the efficiency of pavement designers by allowing them to look at many different design scenarios prior to selecting a design for final analysis.
|
3 |
Laboratory Resilient Modulus Measurements of Aggregate Base Materials in UtahJackson, Kirk David 01 December 2015 (has links) (PDF)
The Utah Department of Transportation (UDOT) has fully implemented the Mechanistic-Empirical Pavement Design Guide for pavement design but has been using primarily level-three design inputs obtained from correlations to aggregate base materials developed at the national level. UDOT was interested in investigating correlations between laboratory measurements of resilient modulus, California bearing ratio (CBR), and other material properties specific to base materials commonly used in Utah; therefore, a statewide testing program was needed. The objectives of this research were to 1) determine the resilient modulus of several representative aggregate base materials in Utah and 2) investigate correlations between laboratory measurements of resilient modulus, CBR, and other properties of the tested materials. Two aggregate base materials were obtained from each of the four UDOT regions. Important material properties, including particle-size distribution, soil classification, and the moisture-density relationship, were investigated for each of the sampled aggregate base materials. The CBR and resilient modulus of each aggregate base material were determined in general accordance with American Society for Testing and Materials D1883 and American Association of State Highway and Transportation Officials T 307, respectively. After all of the data were collected, several existing models were evaluated to determine if one or more of them could be used to predict the resilient modulus values measured in this research. Statistical analyses were also performed to investigate correlations between measurements of resilient modulus, CBR, and other properties of the tested aggregate base materials, mainly including aspects of the particle-size distributions and moisture-density relationships. A set of independent predictor variables was analyzed using both stepwise regression and best subset analysis to develop a model for predicting resilient modulus. After a suitable model was developed, it was analyzed to determine the sensitivity of the model coefficients to the individual data points. For the aggregate base materials tested in this research, the average resilient modulus varied from 16.0 to 25.6 ksi. Regarding the correlation between resilient modulus and CBR, the test results show that resilient modulus and CBR are not correlated for the materials tested in this research. Therefore, a new model was developed to predict the resilient modulus based on the percent passing the No. 200 sieve, particle diameter corresponding to 30 percent finer, optimum moisture content, maximum dry density (MDD), and ratio of dry density to MDD. Although the equation may not be applicable for values outside the ranges of the predictor variables used to develop it, it is expected to provide UDOT with reasonable estimates of resilient modulus values for aggregate base materials similar to those tested in this research.
|
4 |
Resilient modulus prediction using neural network algorithmHanittinan, Wichai 20 September 2007 (has links)
No description available.
|
5 |
Evaluation of low-quality recycled concrete pavement aggregates for subgrade soil stabilizationTavakol, Masoumeh January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Mustaque A. Hossain / Stacey E. Kulesza / Recycled concrete aggregate (RCA) is the byproduct of the demolition of concrete structures and pavements. An estimated 140 million tons of concrete waste is produced annually in the United States, most of which ends up in landfills. The use of RCA to replace quarried aggregates in paving projects is one way to utilize these materials and alleviate concerns regarding this increasing waste stream. RCA usage prevents waste concrete disposal into landfills, resulting in more sustainable use of mineral aggregate sources, and may further reduce costs associated with paving projects. However, the inferior physical properties of RCA, such as the presence of recycled mortar, complicate the incorporation of RCA into new concrete mixtures. State highway agencies such as the Kansas Department of Transportation are facing further issues with RCA from D-cracked pavements, raising the question if D-cracked aggregates should be used in paving operations.
No known work has evaluated the effect of RCA from D-cracked pavements in subgrade soil stabilization. This study stabilized a low-plasticity clay in Kansas using RCA and three stabilizing materials (lime, Class C fly ash, and a combination of Portland cement and fly ash). Candidate mixtures with varying proportions of chemical stabilizers and D-cracked aggregates were evaluated using the standard Proctor, unconfined compressive strength, linear shrinkage, and California Bearing Ratio tests. Microstructure characteristics of selected mixtures were explored using scanning electron microscopy (SEM) and energy dispersive X-ray tests. Laboratory test results indicated that RCA, in conjunction with all cementitious materials except lime, improved clay strength, stiffness, and shrinkage properties. SEM results indicated that RCA caused a low void space and a dense arrangement of soil particles. RCA effectively improved evaluated mixture properties when an adequate soil-RCA bond was reached using chemical agents. The long-term performance of full-depth flexible pavements with stabilized mixtures as subgrade was assessed in the AASHTOWare Pavement ME Design (commonly known as MEPDG) software. The life-cycle cost of flexible pavements with stabilized mixtures was estimated for a 40-year design period. Economic analysis results indicated that RCA was cost effective only if it was used with a combination of fly ash and Portland cement.
|
6 |
Quick Shear Testing of Aggregate Base Materials Stabilized with GeogridSelk, Rawley Jack 01 July 2017 (has links)
The objective of this research was to apply a previously recommended laboratory testing protocol to specific aggregate base materials that are also the subject of ongoing full-scale field testing. The scope of this research involved three aggregate base materials selected from three sites where full-scale field testing programs have been established. The first and second field sites included five different geogrid types, categorized as either biaxial or triaxial, in a singlelayer configuration, while the third site included only the triaxial geogrid type in either a singleor double-layer configuration. Geogrid-stabilized and unstabilized control specimens were evaluated using the American Association of State Highway and Transportation Officials T 307 quick shear testing protocol. Measurements of load and axial displacement were recorded and used to develop a stress-strain plot for each specimen tested. The peak axial stress, the modulus to the peak axial stress, the modulus of the elastic portion of the curve, and the modulus at 2 percent strain were then calculated. Statistical analyses were performed to investigate differences between geogridstabilized specimens and unstabilized control specimens and to investigate differences between individual geogrid products or geogrid configurations. Depending on the method of data analysis, the quick shear test results indicate that geogrid stabilization, with the effect of geogrid stabilization averaged across all of the geogrid products evaluated in this study, may or may not improve the structural quality of the aggregate base materials evaluated in this study. The results also indicate that, regardless of the method of analysis, one geogrid product or configuration may be more effective than another at improving the structural quality of a given aggregate base material as measured using the quick shear test. All results from this research are limited in their application to the aggregate base material types, geogrid products, and geogrid configurations associated with this study. Additional research is needed to compare the results of the laboratory quick shear testing obtained for this study with the structural capacity of the geogrid-stabilized and unstabilized control sections that have been constructed at corresponding full-scale field testing sites. Specifically, further research is needed to determine which method of laboratory data analysis yields the best comparisons with field test results. Finally, correlations between the results of quick shear testing and resilient modulus need to be investigated in order to incorporate the findings of the quick shear test on geogrid-stabilized base materials into mechanistic-empirical pavement design.
|
7 |
Impact of Forecasted Freight Trends on Highway Pavement InfrastructureJanuary 2016 (has links)
abstract: The major challenge for any pavement is the freight transport carried by the structure. This challenge is expected to increase in the coming years as freight movements are projected to grow and because these movements account for most of the load related distresses for the pavement. Substantial effort has been devoted to identifying the impacts of these future national freight trends with respect to the environment, economic growth, congestion, and reliability. These are all important aspects relating to the freight question, but an equally important and often overlooked aspect of this issue involves the impact of freight trends on the physical infrastructure. This study analyzes the impact of future freight traffic trends on 26 major interstates representing 68% of the total system mileage and carrying 80% of the total national roadway freight. The pavement segments were analyzed using the Mechanistic Empirical Pavement Design Guide software after collecting the relevant traffic, climate, structural, and material properties. Comparisons were drawn between the expected pavement performance using current design standards for traffic growth and performance predictions that incorporated more detailed freight projections which themselves considered job growth and six key drivers of freight movement. The differences in the resultant performance were used to generate maps that provide a bird’s eye view of locations that are especially vulnerable to future trends in freight movement. The analysis shows that the areas of greatest vulnerability include segments that are directly linked to the busiest ports, and surprisingly those from Atlantic and Central states that provide long distance connectivity, but do not currently carry the highest traffic volumes. / Dissertation/Thesis / Masters Thesis Civil and Environmental Engineering 2016
|
8 |
A Technique for Estimating the Resilient Modulus (MR) of Unsaturated Soils from Modified California Bearing Ratio (CBR) TestsOmenogor, Kenneth Onyekachi 20 July 2022 (has links)
The Mechanistic-Empirical Pavement Design Guide (MEPDG) which is widely used for the rational design of pavements has three different design levels (i.e., Level 1, Level 2, and Level 3) that are typically based on the resources and the level of risk associated for a given project. Specifically, Level 2 design requires the estimation of the resilient modulus, MR (which is the key parameter in the mechanistic design procedures) from simple experiments such as the California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS) and R-value tests. In this study, a technique is proposed for estimation of MR from CBR that can be used in Level 2 designs of pavements.
The California Bearing Ratio (CBR) is a relatively inexpensive laboratory test which provides a measure of the strength of a soil. The CBR test can easily be performed as the experimental procedure is relatively straightforward to execute. The CBR test procedure widely used and is simple, however the fundamental engineering principles governing CBR tests do not realistically describe the mechanical behavior of pavements. Due to this reason, there has been a significant interest to design pavements using a mechanistic approach such as the resilient modulus (MR). The MR test method provides an indication of the stiffness of pavement materials under cyclic loads, which closely represents the typical loading conditions that are experienced by pavements. MR is a reliable method as it considers the cyclic loading (i.e., resilient response) of pavements. However, it has one major drawback as the triaxial testing equipment used for measurement of the MR is relatively costly, testing is complex and requires trained professional to perform them.
The CBR and MR are both used in present day practice to evaluate the strength of pavement materials. However, the CBR is widely used because of its relatively low cost and the vast experience with its use in the design of pavements. The common trend in today’s practice is to estimate the MR from CBR as evident in most pavement design procedures used around the world. For instance, the Mechanistic-Empirical Pavement Design Guide (AASHTO 2008) suggests that the MR may be estimated from standard tests like the CBR for design of Level 2 pavements. Numerous studies in the literature propose relationships between CBR and MR, but only a hand full of these studies takes account of the effect of matric suction, 𝜓 which is a key stress state variable that describes the rational behavior of unsaturated soils. This thesis document includes the explanation of a modified CBR test equipment capable of measuring unsaturated properties (𝜓 and water content) of specimens subjected to wetting and drying. In addition, some correlations were developed using the measured CBR data and the data of MR from other studies. The results provide useful information for Level 2 mechanistic-empirical design of pavement structures for various soils in the province of Ontario.
|
9 |
Characterization of Ohio Traffic Data for Integration into the Mechanistic-Empirical Pavement DesignFrankhouser, Andrew 14 June 2013 (has links)
No description available.
|
10 |
Investigation of Laboratory Test Procedures for Assessing the Structural Capacity of Geogrid-Reinforced Aggregate Base MaterialsKnighton, Jaren Tolman 01 March 2015 (has links) (PDF)
The modulus of aggregate base layers in pavement structures can potentially be increased through the use of geogrid. However, methods for determining how much structural benefit can be expected from a given geogrid product have not been standardized. A laboratory testing protocol is therefore needed to enable evaluation, in terms of modulus or California bearing ratio (CBR), for example, of the degree of improvement that may be achieved by a given geogrid. Consequently, the objective of this research was to identify a laboratory test method that can be used to quantify improvements in structural capacity of aggregate base materials reinforced with geogrid. For this research, National Cooperative Highway Research Program Report 598 repeated load triaxial, American Association of State Highway and Transportation Officials (AASHTO) T 307 quick shear, and CBR testing protocols were used to test unreinforced and geogrid-reinforced aggregate base materials from northern Utah. Biaxial and triaxial geogrid were investigated in multiple reinforcement configurations. Several statistical analyses were performed on the results of each test method to identify the test that is most likely to consistently show an improvement in the structural capacity of aggregate base materials reinforced with geogrid. The results of this research indicate that, for the methods and materials evaluated in this study, calculation of the modulus at 2 percent strain from the AASHTO T 307 quick shear data is the test method most likely to consistently show an improvement in structural capacity associated with geogrid reinforcement. Of the three configurations investigated as part of this research, placing the geogrid at an upper position within a specimen is preferred. Given that the end goal of the use of geogrid reinforcement is to improve pavement performance, additional research is needed to compare the results of the AASHTO T 307 quick shear test obtained in the laboratory with the structural capacity of geogrid-reinforced aggregate base materials measured in the field. In addition, correlations between the results of the AASHTO T 307 quick shear test and resilient modulus need to be investigated in order to incorporate the findings of the AASHTO T 307 quick shear test on reinforced base materials into mechanistic-empirical pavement design.
|
Page generated in 0.0954 seconds