Spelling suggestions: "subject:"mechanosensitive"" "subject:"chemosensitivity""
1 |
Mechanosensitivity of the fish heartPatrick, Simon January 2010 (has links)
Mechanosensitivity describes the ability to respond to a mechanicalstimulus. The heart can respond to a mechanical stimulus through the action ofmechanosensitive ion channels (MSCs). MSCs provide a direct link betweenstretch and electrical activity. However, the heart does not react to stretch solelythrough the action of MSCs. The mammalian myocardium possesses a biphasicresponse to stretch: first, there is an immediately increase in the force of cardiaccontraction, known as the Frank-Starling response; secondly, there is a slowpositive inotropic response, known as the slow force response (SFR) that occursover the minutes following the initial stretch. Fish are unique amongst vertebrates as, with a few exceptions, they relymore heavily on changes in stroke volume than heart rate when regulatingcardiac output. Rainbow trout (Oncorhynchus mykiss) are particularly sensitiveto the Frank-Starling response and small increases in filling pressure lead to largeincreases in stroke volume (300 %) during strenuous exercise. The ability of fishhearts to undertake these large dilations makes them an ideal model whenlooking at the effect of stretch on cardiac muscle as they may exhibit morepronounced responses to mechanical stimuli. Despite this, the role of mechanicalregulation in the fish heart has undergone sparse investigation. The aim of this thesis was to investigate the mechanosensitivity of thefish heart at a number of resolutions. Chapter three looks at the effect of stretchon the isolated whole rainbow trout heart. I found that MSCs are activated atphysiological extremes of input and output pressures. The trout ortholog of acandidate MSC, TRPC1, was cloned and its presence in the heart was verified. Both MSCs and exaggerated cardiac transmural electrical heterogeneity cancause re-entrant arrhythmias in the mammalian heart. As the piscine heart hasshown resistance to these arrhythmias I examined the transmural electricalheterogeneity of the tuna heart in Chapter four. I found no evidence oftransmural electrical heterogeneity in the tuna heart which may explain thereduced susceptibility of the fish heart to re-enterant arrhythmias. In Chapter fiveI investigated the effect of stretch on ventricular trabecular bundle preparationsand isolated ventricular myocytes of the rainbow trout. This study was the first tofind a lack of a SFR in a vertebrate heart and provides evidence for theimportance of the Na+ /H+ -exchanger in the SFR. Finally the study in Chaptersix examined the length-dependent Ca2+ sensitivity of skinned ventricular rat andtrout myocytes. I show that the increased length-dependent Ca2+ sensitivity of thetrout myocytes may account for the extended functional limb of the piscinelength-tension relationship. Skinned trout myocytes were shown to develop ahigh passive tension that could not be explained by the trout titin isoform ratio,but may be explained by increased phosphorylation of titin in vivo. My PhD research has produced clear and novel evidence for theimportance of mechanosensitivity in the fish heart. From the level of the wholeheart to the level of the individual sarcomere, stretch induces physiologicalchanges in this vital organ. A greater understanding of piscine cardiacmechanosensitivity will greatly improve general knowledge ofmechanosensitivity in general and will provide an evolutionary point ofcomparison for the studies of mechanosensitivity in other organisms.
|
2 |
Processing of different sensory qualities in the olfactory bulb of Xenopus laevis studied by advanced line illumination microscopyBrinkmann, Alexander Peter Ernst 13 September 2016 (has links)
No description available.
|
3 |
Developing a Cell-like Substrate to Investigate the Mechanosensitivity of Cell-to-Cell JunctionsShilts, Kent D. 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The role of mechanical forces in the fate and function of adherent cells has been revealed to be a pivotal factor in understanding cell biology. Cells require certain physical cues to be present in their microenvironment or the cell will begin apoptosis. Mechanical signals from the environment are interpreted at the cellular level and biochemical responses are made due to the information from outside the cell, this process is known as mechanotransduction. Misinterpretation of physical cues has been indicated in many disease states, including heart disease and asthma. When a cell is bound to the ECM, proteins such as integrins are engaged at static and stable adhesion sites. These tight and static anchoring points found at the ECM exist in stark contrast to the dynamic conditions seen at intercellular junctions. Intercellular junctions, such as gap and adherens junctions, are formed between cells to act as a mechanism to relay information and exchange material. Due to the important role intercellular junctions play in processes of wound healing, epithelial-mesenchymal transition and cancer metastasis developing more sophisticated levels of understanding of these mechanisms would provide valuable insight.
Complex biological processes, including immune cell signaling and cellular ECM adhesions, have been effectively replicated in model systems. These model systems have included the use of solid supported lipid bilayers and polymeric hydrogels that display cell adhesion molecules. Studies of cellular mechanotransduction at ECM adhesion sites has also been completed with covalently functionalized polymeric substrates of adjustable elasticity. However, developing model systems that allow the accurate reproduction of properties seen at intercellular junctions, while also allowing the investigation of cellular mechanosensitivity has proven to be a difficult task. Previous work has shown that polymer-tethered lipid bilayers (PTLBs) are a viable material to allow the replication of the dynamics and adhesion seen at intercellular junctions. Although efforts have been made to produce PTLBs with different mechanical properties, there is currently not a material with sufficient tunable elastic properties for the study of cellular mechanotransduction.
To establish a system that allows the study of stiffness effects across a biologically relevant range (~0.50 – 40 kPa) while maintaining the dynamic properties seen at cell-to-cell junctions, polymer gel-tethered bilayers (PGTBs) were developed. A fabrication strategy was established to allow the incorporation of a hydrogel support with easily tunable stiffness and a tethered lipid bilayer coating, which produced a powerful platform to study the effects of stiffness at intercellular junctions. Careful attention was given to maintain the beneficial properties of membrane diffusion, and it was shown that on different linking architectures lipid bilayers could be established and diffusion was preserved. Microscopy-based FCS and FRAP methodology were utilized to measure lipid diffusion in these systems, while confocal microscopy was used to analyze cell spreading and adhesion. Three distinct architectures to link the lipid membrane to the underlying polyacrylamide hydrogel were pursued in this work, a non-covalent biotin-streptavidin system, a covalently linked design with fibronectin, and a direct covalent linkage utilizing crosslinker chemistry. In this work, it was shown that cells were able to spread and adhere on these substrates, with cell adhesion zones visualized under plated cells that demonstrate the capability of the cell to rearrange the presented linkers, while maintaining a stable material. Also confirmed is the tunability of the polymer hydrogel across a wide range of stiffness, this was shown by quantitative changes in cell spreading area in response to polymer properties.
|
4 |
L' ablation des neurones GINIP+ révèle un rôle critique des mécanorécepteurs à bas seuil de type C dans la modulation des douleurs chimiques et mécaniques / Genetic ablation of GINIP neurons reveals a critical role of C-LTMRs in modulation of Mechanical and Formalin-evoked painUrien, Louise 10 July 2015 (has links)
Chez les vertébrés, la douleur est perçue par des neurones spécialisés, les nocicepteurs, dont le corps cellulaire est localisé dans les ganglions de la racine dorsale (DRG) et qui présentent une grande hétérogénéité. Nous cherchons donc à identifier de nouveaux marqueurs des sous populations de nocicepteurs afin de pouvoir comprendre cette diversité et d’attribuer des fonctions physiologiques précises à ces différentes sous-populations neuronales. Nous avons identifié le gène GINIP, spécifiquement exprimé dans une sous populations de nocicepteurs non peptidergiques et définissant deux classes particulières de neurones : les neurones MRGPRD+ et les C-Low Threshold MecanoReceptors (C-LTMRs). Durant ma thèse, j’ai cherché à savoir quelles modalités sensorielles sont détectées et transmises par la population GINIP+. Pour cela, j’ai tiré avantage d’un modèle murin ginip généré au laboratoire, permettant d’éliminer spécifiquement les neurones GINIP+ au sein des neurones du DRG. J’ai pu démontrer que l’ablation ciblée de ces neurones entraine une diminution de la douleur induite par l’injection de formaline, cela sans affecter la sensibilité thermique ou mécanique. Sachant que les neurones MRGPRD positifs ne sont pas impliqués dans la réponse douloureuse induite par l’injection de formaline, mais jouent un rôle primordial dans la mécano sensibilité en condition normale et pathologique, notre étude montre que la réponse douloureuse induite par l’injection de formaline est due à l’activation des C-LTMRs. En conclusion, notre étude révèle que les C-LTMRs agissent en tant que puissants modulateurs des douleurs chimiques et mécaniques. / Primary sensory neurons are heterogeneous by myriad of molecular criteria. However, the functional significance of this remarkable heterogeneity is just emerging. Here we used our recently generated ginip mouse model to selectively ablate the cutaneous free nerve endings MRGPRD+ neurons and the C-Low threshold mechanoreceptors (C-LTMRs). Ablation of GINIP-expressing neurons led to a significant decrease of formalin-evoked first pain and a complete absence of the second phase pain response, without affecting thermal or mechanical sensitivity. Knowing that MRGPRD+ neurons are dispensable for formalin-evoked pain and that these neurons play a critical role in acute and injury-induced mechanical pain, our data demonstrate that formalin-induced pain hypersensitivity is primarily transduced via C-LTMRs, and suggest that C-LTMRs and MRGPRD+ neurons play antagonistic roles in transduction of acute and injury-induced mechanical pain. Therefore, our results suggest that C-LTMRs act as strong modulators of chemical and mechanical pain signals.
|
5 |
DEVELOPING A CELL-LIKE SUBSTRATE TO INVESTIGATE THE MECHANOSENSITIVITY OF CELL-TO-CELL JUNCTIONSKent Douglas Shilts (9182480) 04 August 2020 (has links)
<p>The role of mechanical forces in
the fate and function of adherent cells has been revealed to be a pivotal
factor in understanding cell biology. Cells require certain physical cues to be
present in their microenvironment or the cell will begin apoptosis. Mechanical
signals from the environment are interpreted at the cellular level and
biochemical responses are made due to the information from outside the cell, this
process is known as mechanotransduction. Misinterpretation of physical cues has
been indicated in many disease states, including heart disease and asthma. When
a cell is bound to the ECM, proteins such as integrins are engaged at static
and stable adhesion sites. These tight and static anchoring points found at the
ECM exist in stark contrast to the dynamic conditions seen at intercellular
junctions. Intercellular junctions, such as gap and adherens junctions, are
formed between cells to act as a mechanism to relay information and exchange
material. Due to the important role intercellular junctions play in processes
of wound healing, epithelial-mesenchymal transition and cancer metastasis
developing more sophisticated levels of understanding of these mechanisms would
provide valuable insight.</p>
<p>Complex biological processes,
including immune cell signaling and cellular ECM adhesions, have been
effectively replicated in model systems. These model systems have included the
use of solid supported lipid bilayers and polymeric hydrogels that display cell
adhesion molecules. Studies of cellular mechanotransduction at ECM adhesion
sites has also been completed with covalently functionalized polymeric
substrates of adjustable elasticity. However, developing model systems that
allow the accurate reproduction of properties seen at intercellular junctions,
while also allowing the investigation of cellular mechanosensitivity has proven
to be a difficult task. Previous work has shown that polymer-tethered lipid
bilayers (PTLBs) are a viable material to allow the replication of the dynamics
and adhesion seen at intercellular junctions. Although efforts have been made
to produce PTLBs with different mechanical properties, there is currently not a
material with sufficient tunable elastic properties for the study of cellular
mechanotransduction.</p>
<p>To establish a system that allows
the study of stiffness effects across a biologically relevant range (~0.50 – 40
kPa) while maintaining the dynamic properties seen at cell-to-cell junctions,
polymer gel-tethered bilayers (PGTBs) were developed. A fabrication strategy
was established to allow the incorporation of a hydrogel support with easily
tunable stiffness and a tethered lipid bilayer coating, which produced a
powerful platform to study the effects of stiffness at intercellular junctions.
Careful attention was given to maintain the beneficial properties of membrane
diffusion, and it was shown that on different linking architectures lipid
bilayers could be established and diffusion was preserved. Microscopy-based FCS
and FRAP methodology were utilized to measure lipid diffusion in these systems,
while confocal microscopy was used to analyze cell spreading and adhesion.
Three distinct architectures to link the lipid membrane to the underlying
polyacrylamide hydrogel were pursued in this work, a non-covalent
biotin-streptavidin system, a covalently linked design with fibronectin, and a
direct covalent linkage utilizing crosslinker chemistry. In this work, it was
shown that cells were able to spread and adhere on these substrates, with cell
adhesion zones visualized under plated cells that demonstrate the capability of
the cell to rearrange the presented linkers, while maintaining a stable
material. Also confirmed is the tunability of the polymer hydrogel across a
wide range of stiffness, this was shown by quantitative changes in cell
spreading area in response to polymer properties.</p>
|
6 |
Compliant 3D Hydrogel Bead Scaffolds to Study Cell Migration and Mechanosensitivity in vitroWagner, Katrin 19 January 2019 (has links)
Gewebe sind nicht nur durch ihre biochemische Zusammensetzung definiert, sondern auch durch ihre individuellen mechanischen Eigenschaften. Inzwischen ist es weithin akzeptiert, dass Zellen ihre mechanische Umgebung spüren und darauf reagieren. Zum Beispiel werden Zellmigration und die Differenzierung von Stammzellen durch die Umgebungssteifigkeit beeinflusst. Um diese Effekte in vitro zu untersuchen, wurden viele Zellkulturstudien auf 2D Hydrogelsubstraten durchgeführt. Zusätzlich dazu steigt die Anzahl von Studien an, die hydrogelbasierte 3D-Scaffolds nutzen, um 2D Studien zu validieren und die experimentellen Bedingungen der Situation in vivo anzunähern. Jedoch erweist es sich weiterhin als schwierig den Effekt von Mechanik in 3D in vitro zu untersuchen, da in den gemeinhin genutzten 3D Hydrogelsystemen immer eine Kopplung zwischen Gelporosität und Steifigkeit besteht. Zusätzlich hängt die Konzentration der biologisch aktiven Bindungsstellen für Zellen oft ebenfalls von der Steifigkeit ab.
Diese Arbeit präsentiert die Entwicklung und Optimierung neuer 3D Hydrogelkugel-Scaffolds, in denen die Steifigkeit von der Porosität schließlich entkoppelt wird. Mit Hydrogelkugeln als Scaffold-Bausteine ist es nun möglich 3D Scaffolds mit definierten mechanischen Eigenschaften und konstanter Porengröße zu generieren. Während der Methodenentwicklung wurden verschiedene Prinzipien und Kultivierungskammern konstruiert und überarbeitet, gefolgt von der theoretischen Betrachtung der Sauerstoffdiffusion, um die
Eignung der gewählten Kammer hinsichtlich Zellvitalität und Zellwachstum zu überprüfen. Eine Kombination aus mehreren getesteten Filtern wurde ausgewählt um HydrogelkugelScaffolds erfolgreich in der ausgewählten Kammer zu generieren. Im Weiteren wurden verschiedene Hydrogelmaterialien untersucht hinsichtlich der erfolgreichen Produktion monodisperser Hydrogelkugeln und der Erzeugung stabiler Scaffolds. Hydrogelkugeln aus Polyacrylamid (PAAm) wurden als Scaffold-Bausteine ausgewählt um damit die Eignung des entwickelten Systems zu demonstrieren lebende Zellen zu mikroskopieren. Außerdem wurde
das Überleben von Fibroblasten über vier Tage in unterschiedlich steifen HydrogelkugelScaffolds erfolgreich gezeigt. Weiterhin war es möglich erste Zellmigrationsexperimente durchzuführen. Dafür wurden sowohl einfache PAAm-Hydrogelkugeln als auch mit Adhäsionsmolekülen funktionalisierte Hydrogelkugeln genutzt, um unterschiedlich steife Schichten in einem Scaffold zu erzeugen. Dadurch war es möglich nicht nur Zellmigration anhand von Zelladhäsion in 3D Scaffolds mit Steifigkeitsgradienten zu beobachten, sondern auch Zellmigration ohne Zelladhäsion.:1 Introduction
1.1 Mechanics play a role in biology
1.2 3D cultures and scaffolds
1.3 3D hydrogel systems to study effects of mechanics
1.4 Decoupling stiffness and porosity in 3D scaffolds
2 Materials
3 Methods
3.1 Laser scanning microscopy and microscopy data processing
3.2 Atomic force microscopy (AFM)
3.3 Refractive index matching of PMMA beads
3.4 Regular PMMA bead scaffolds for developing analysis algorithm
3.5 Cell culture standards
3.6 Fluorescent labelling of ULGP agarose
3.7 Production of polydisperse ULGP agarose beads
3.8 Hydrogel bead production via microfluidics
3.9 PAAm bead functionalization
3.10 Real-time fluorescence and deformability cytometry (RT-fDC)
3.11 3D scaffolds made from hydrogel beads
3.12 Statistics
4 Results
4.1 Design of a suitable scaffold device
4.2 Theoretical oxygen supply in 3D culture system is sufficient for cell survival and proliferation
4.3 Further optimization of 3D scaffold device
4.3.1 PMMA beads can be arranged in stable scaffolds
4.3.2 Regular PMMA bead scaffolds can be achieved and analysed
4.3.3 PMMA bead scaffolds and agarose bead scaffolds act as combined filter to stack up hydrogel beads
4.4 PAAm hydrogel beads produced by microfluidics are suitable to create compliant 3D scaffolds
4.5 Reproducible, regular and stable 3D scaffolds made of hydrogel beads
4.6 NIH-3T3/GFP cell migration within 3D hydrogel bead scaffolds
5 Discussion and Concluding Remarks
6 Bibliography
List of Figures
List of Tables
Eigenständigkeitserklärung
Appendix A
Appendix B
FIJI macro for FFT analysis maxima
Python script to determine regularity of PMMA bead scaffolds
Excel macro to determine number of peaks for regularity analysis / Tissues are defined not only by their biochemical composition, but also by their distinct mechanical properties. It is now widely accepted that cells sense their mechanical environment and respond to it. For example, cell migration and stem cell differentiation is affected by stiffness. To study these effects in vitro, many cell culture studies have been performed on 2D hydrogel substrates. Additionally, the amount of 3D studies based on hydrogels as 3D scaffold is increasing to validate 2D in vitro studies and adjust experimental conditions closer to the situation in vivo. However, studying the effects of mechanics in vitro in 3D is still challenging as commonly used 3D hydrogel assays always link gel porosity with stiffness. Additionally, the concentration of biologically active adhesion sides often also
depends on the stiffness.
This work presents the development and optimization of novel 3D hydrogel bead scaffolds where the stiffness is finally decoupled from porosity. With hydrogel beads as scaffold building blocks it was possible to generate 3D scaffolds with defined mechanical properties and a constant pore size. During the method development, different culture devices were constructed and revised, followed by oxygen diffusion simulations to proof the suitability of the chosen device for cell survival and growth. A combination of different filter approaches was selected to generate hydrogel bead scaffolds in the culture device. Furthermore, different
hydrogel materials were investigated regarding successful production of monodisperse beads and stable scaffold generation. Polyacrylamide (PAAm) hydrogel beads were chosen as scaffold building blocks to demonstrate live-cell imaging and successful cell survival over four days in differently compliant hydrogel bead scaffolds. Moreover, first cell migration experiments were performed by using plain PAAm hydrogel beads as well as PAAm hydrogel beads functionalized with adhesion molecules with differently stiff layers in one scaffold. Thereby fibroblast migration was observed not only in adhesion-dependent migration manner, but also in an adhesion-independent mode .:1 Introduction
1.1 Mechanics play a role in biology
1.2 3D cultures and scaffolds
1.3 3D hydrogel systems to study effects of mechanics
1.4 Decoupling stiffness and porosity in 3D scaffolds
2 Materials
3 Methods
3.1 Laser scanning microscopy and microscopy data processing
3.2 Atomic force microscopy (AFM)
3.3 Refractive index matching of PMMA beads
3.4 Regular PMMA bead scaffolds for developing analysis algorithm
3.5 Cell culture standards
3.6 Fluorescent labelling of ULGP agarose
3.7 Production of polydisperse ULGP agarose beads
3.8 Hydrogel bead production via microfluidics
3.9 PAAm bead functionalization
3.10 Real-time fluorescence and deformability cytometry (RT-fDC)
3.11 3D scaffolds made from hydrogel beads
3.12 Statistics
4 Results
4.1 Design of a suitable scaffold device
4.2 Theoretical oxygen supply in 3D culture system is sufficient for cell survival and proliferation
4.3 Further optimization of 3D scaffold device
4.3.1 PMMA beads can be arranged in stable scaffolds
4.3.2 Regular PMMA bead scaffolds can be achieved and analysed
4.3.3 PMMA bead scaffolds and agarose bead scaffolds act as combined filter to stack up hydrogel beads
4.4 PAAm hydrogel beads produced by microfluidics are suitable to create compliant 3D scaffolds
4.5 Reproducible, regular and stable 3D scaffolds made of hydrogel beads
4.6 NIH-3T3/GFP cell migration within 3D hydrogel bead scaffolds
5 Discussion and Concluding Remarks
6 Bibliography
List of Figures
List of Tables
Eigenständigkeitserklärung
Appendix A
Appendix B
FIJI macro for FFT analysis maxima
Python script to determine regularity of PMMA bead scaffolds
Excel macro to determine number of peaks for regularity analysis
|
7 |
Systems approach to the study of stretch and arrhythmias in right ventricular failure induced in rats by monocrotalineBenoist, D., Stones, R., Benson, A.P., Fowler, E.D., Drinkhill, M.J., Hardy, Matthew E., Saint, D.A., Cazorla, O., Bernus, O., White, E. 09 July 2014 (has links)
No / We demonstrate the synergistic benefits of using multiple technologies to investigate complex multi-scale biological responses. The combination of reductionist and integrative methodologies can reveal novel insights into mechanisms of action by tracking changes of in vivo phenomena to alterations in protein activity (or vice versa). We have applied this approach to electrical and mechanical remodelling in right ventricular failure caused by monocrotaline-induced pulmonary artery hypertension in rats.
We show arrhythmogenic T-wave alternans in the ECG of conscious heart failure animals. Optical mapping of isolated hearts revealed discordant action potential duration (APD) alternans. Potential causes of the arrhythmic substrate; structural remodelling and/or steep APD restitution and dispersion were observed, with specific remodelling of the Right Ventricular Outflow Tract. At the myocyte level, [Ca2+]i transient alternans were observed together with decreased activity, gene and protein expression of the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Computer simulations of the electrical and structural remodelling suggest both contribute to a less stable substrate.
Echocardiography was used to estimate increased wall stress in failure, in vivo. Stretch of intact and skinned single myocytes revealed no effect on the Frank-Starling mechanism in failing myocytes. In isolated hearts acute stretch-induced arrhythmias occurred in all preparations. Significant shortening of the early APD was seen in control but not failing hearts. These observations may be linked to changes in the gene expression of candidate mechanosensitive ion channels (MSCs) TREK-1 and TRPC1/6. Computer simulations incorporating MSCs and changes in ion channels with failure, based on altered gene expression, largely reproduced experimental observations.
|
8 |
Mechanical properties of the premature lung: From tissue deformation under load to mechanosensitivity of alveolar cellsNaumann, Jonas, Koppe, Nicklas, Thome, Ulrich H., Laube, Mandy, Zink, Mareike 15 November 2023 (has links)
Many preterm infants require mechanical ventilation as life-saving therapy.
However, ventilation-induced overpressure can result in lung diseases.
Considering the lung as a viscoelastic material, positive pressure inside the
lung results in increased hydrostatic pressure and tissue compression. To
elucidate the effect of positive pressure on lung tissue mechanics and cell
behavior, we mimic the effect of overpressure by employing an uniaxial load
onto fetal and adult rat lungs with different deformation rates. Additionally,
tissue expansion during tidal breathing due to a negative intrathoracic pressure
was addressed by uniaxial tension. We found a hyperelastic deformation
behavior of fetal tissues under compression and tension with a remarkable
strain stiffening. In contrast, adult lungs exhibited a similar response only during
compression. Young’s moduli were always larger during tension compared to
compression, while only during compression a strong deformation-rate
dependency was found. In fact, fetal lung tissue under compression showed
clear viscoelastic features even for small strains. Thus, we propose that the fetal
lung is much more vulnerable during inflation by mechanical ventilation
compared to normal inspiration. Electrophysiological experiments with
different hydrostatic pressure gradients acting on primary fetal distal lung
epithelial cells revealed that the activity of the epithelial sodium channel
(ENaC) and the sodium-potassium pump (Na,K-ATPase) dropped during
pressures of 30 cmH2O. Thus, pressures used during mechanical ventilation
might impair alveolar fluid clearance important for normal lung function.
|
9 |
The Influence of Substrate Elasticity and Shear Rate on Human Blood Platelet Contraction / Time Resolved Data Acquisition, Microfluidic Designs and AlgorithmsHanke, Jana 20 April 2018 (has links)
No description available.
|
10 |
Effets de l'étirement axial sur des cardiomyocytes murins déficients en dystrophine : dérégulation calcique et canaux TRPs / Effects of axial stretch on murine deficient-dystrophin cardiomyocytes : calcium deregulation and TRPs channelsAguettaz, Elizabeth 29 June 2015 (has links)
La dystrophie musculaire de Duchenne (DMD) est la conséquence de la perte de la dystrophine, protéine sous membranaire indispensable au maintien mécanique et fonctionnel du sarcolemme. Cette déficience augmenterait les influx cationiques par des microruptures de la membrane ou par la dérégulation de canaux tels que les canaux activés par l'étirement (SACs: Stretch-activated channel). Dans ce travail, les effets d'une stimulation mécanique ont été explorés sur des cardiomyocytes dans le contexte pathologique de la cardiomyopathie dilatée associée à la DMD. L'utilisation de fibres de carbone a permis de réaliser un étirement axial similaire aux conditions physiologiques de remplissage ventriculaire. Dans ces conditions, l'exploration de la topographie membranaire par la microscopie de conductance ionique à balayage n'a montré aucune évolution de la surface ni de lésion du sarcolemmel dans les conditions d'étirement. L'étude s'est donc focalisée sur l'activité de candidats moléculaires des SACs et plus particulièrement ceux appartenant à la famille des TRPs (Transient Receptor Potential) dans le dérèglement de l'homéostasie calcique induite par l'étirement. Les influx cationiques évalués par la technique d'extinction de fluorescence et l'étude de la concentration intracellulaire de Ca2+ ([Ca2+]i) grâce à la sonde Fluo8 montrent une implication des canaux TRPV2 et TRPCs. Les premiers semblent responsables d'une entrée cationique et d'une augmentation de [Ca2+]i importante dans les cardiomyocytes mdx. Les seconds, bien que responsables d'un influx, ne participeraient pas à l'augmentation de [Ca2+]i. Ces résultats révèlent que les canaux TRPV2 pourraient jouer un rôle important dans la dérégulation calcique observée dans les cardiomyocytes déficients en dystrophine. / Duchenne muscular dystrophy (DMD) is the consequence of the loss of dystrophin, a subsarcolemmal protein essential for mechanical and functional maintenances of the sarcolemma. This deficiency could increase cationic influxes by membrane microruptures or by dysregulation of channels such as stretch-activated channels (SACs). In this work, the effects of a mechanical stretch were explored on cardiomyocytes in the pathological context of dilated cardiomyopathy associated with DMD. Using carbon fibers, an homogenous axial stretch was performed to mimic physiological conditions of ventricular filling. In these conditions, exploration of membrane topography using the scanning ion conductance microscopy did not show any surface evolution or sarcolemma disruption in stretch condition. The study was thus focused on activity and identification of molecular candidates for SACs, especially the TRPs (Transient Receptor Potential) channels in the stretch-induced. Ca2+ homeostasis dysregulation. Cationic influxes assessed by Mn2+-quenching and assessment of the intracellular Ca2+ concentration ([Ca2+]i) using fluo-8 fluorescence demonstrated an involvement of TRPV2 and TRPCs channels. The first ones seem to be responsible for cationic entry and [Ca2+]i increase in mdx cardiomyocytes. The latter, though responsible for an influx, do not contribute to [Ca2+]i increase. These findings reveal that TRPV2 channels could play an important role in calcium dysregulation observed in dystrophin-deficient cardiomyocytes.
|
Page generated in 0.093 seconds