Spelling suggestions: "subject:"medical simulator""
1 |
Haptic Milling Simulation in Six Degrees-of-Freedom : With Application to Surgery in Stiff TissueEriksson, Magnus G. January 2012 (has links)
The research presented in this thesis describes a substantial part of the design of a prototypical surgical training simulator. The results are intended to be applied in future simulators used to educate and train surgeons for bone milling operations. In earlier work we have developed a haptic bone milling surgery simulator prototype based on three degrees-of-freedom force feedback. The contributions presented here constitute an extension to that work by further developing the haptic algorithms to enable six degrees-of-freedom (6-DOF) haptic feedback. Such feedback is crucial for a realistic haptic experience when interacting in a more complex virtual environment, particularly in milling applications.The main contributions of this thesis are:The developed 6-DOF haptic algorithm is based on the work done by Barbic and James, but differs in that the algorithm is modified and optimized for milling applications. The new algorithm handles the challenging problem of real-time rendering of volume data changes due to material removal, while fulfilling the requirements on stability and smoothness of the kind of haptic applications that we approach. The material removal algorithm and the graphic rendering presented here are based on the earlier research. The new 6-DOF haptic milling algorithm is characterized by voxel-based collision detection, penalty-based and constraint-based haptic feedback, and by using a virtual coupling for stable interaction.Milling a hole in an object in the virtual environment or dragging the virtual tool along the surface of a virtual object shall generate realistic contact force and torque in the correct directions. These are important requirements for a bone milling simulator to be used as a future training tool in the curriculum of surgeons. The goal of this thesis is to present and state the quality of a newly developed 6-DOF haptic milling algorithm. The quality of the algorithm is confirmed through a verification test and a face validity study performed in collaboration with the Division of Orthopedics at the Karolinska University Hospital. In a simulator prototype, the haptic algorithm is implemented together with a new 6-DOF haptic device based on parallel kinematics. This device is developed with workspace, transparency and stiffness characteristics specifically adapted to the particular procedure. This thesis is focuses on the 6-DOF haptic algorithm. / QC 20120226
|
2 |
Haptic and visual simulation of material cutting process : a study focused on bone surgery and the use of simulators for education and trainingEriksson, Magnus G. January 2006 (has links)
<p>A prototype of a haptic and virtual reality simulator has been developed for simulation of the bone milling and material removal process occurring in several operations, e.g. temporal bone surgery or dental milling. The milling phase of an operation is difficult, safety critical and very time consuming. Reduction of operation time by only a few percent would in the long run save society large expenses. In order to reduce operation time and to provide surgeons with an invaluable practicing environment, this licentiate thesis discusses the introduction of a simulator system to be used in both surgeon curriculum and in close connection to the actual operations.</p><p>The virtual reality and haptic feedback topics still constitute a young and unexplored area. It has only been active for about 10-15 years for medical applications. High risk training on real patients and the change from open surgery to endoscopic procedures have enforced the introduction of haptic and virtual reality simulators for training of surgeons. Increased computer power and the similarity to the successful aviation simulators also motivate to start using simulators for training of surgical skills.</p><p>The research focus has been twofold: 1) To develop a well working VR-system for realistic graphical representation of the skull itself including the changes resulting from milling, and 2) to find an efficient algorithm for haptic feedback to mimic the milling procedure using the volumetric Computer Tomography (CT) data of the skull. The developed haptic algorithm has been verified and tested in the simulator. The visualization of the milling process is rendered at a graphical frame rate of 30 Hz and the haptic rendering loop is updated at 1000 Hz. Test results show that the real-time demands are fulfilled. The visual and haptic implementations have been the two major steps to reach the over all goal with this research project.</p><p>A survey study is also included where the use of VR and haptic simulators in the surgical curriculum is investigated. The study starts with a historical perspective of the VR and haptic topics and is built up by answering different questions related to this topic and the implementation of simulators at the medical centres. The questions are of general concern for those developing surgical VR and haptic simulators.</p><p>Suggested future work includes modelling, development and validation of the haptic forces occurring in the milling process and, based on this, implementation in the simulator system. Also, further development of the simulator should be done in close cooperation with surgeons in order to get appropriate feedback for further improvements of the functionality and performance of the simulator.</p>
|
3 |
Haptic and visual simulation of material cutting process : a study focused on bone surgery and the use of simulators for education and trainingEriksson, Magnus G. January 2006 (has links)
A prototype of a haptic and virtual reality simulator has been developed for simulation of the bone milling and material removal process occurring in several operations, e.g. temporal bone surgery or dental milling. The milling phase of an operation is difficult, safety critical and very time consuming. Reduction of operation time by only a few percent would in the long run save society large expenses. In order to reduce operation time and to provide surgeons with an invaluable practicing environment, this licentiate thesis discusses the introduction of a simulator system to be used in both surgeon curriculum and in close connection to the actual operations. The virtual reality and haptic feedback topics still constitute a young and unexplored area. It has only been active for about 10-15 years for medical applications. High risk training on real patients and the change from open surgery to endoscopic procedures have enforced the introduction of haptic and virtual reality simulators for training of surgeons. Increased computer power and the similarity to the successful aviation simulators also motivate to start using simulators for training of surgical skills. The research focus has been twofold: 1) To develop a well working VR-system for realistic graphical representation of the skull itself including the changes resulting from milling, and 2) to find an efficient algorithm for haptic feedback to mimic the milling procedure using the volumetric Computer Tomography (CT) data of the skull. The developed haptic algorithm has been verified and tested in the simulator. The visualization of the milling process is rendered at a graphical frame rate of 30 Hz and the haptic rendering loop is updated at 1000 Hz. Test results show that the real-time demands are fulfilled. The visual and haptic implementations have been the two major steps to reach the over all goal with this research project. A survey study is also included where the use of VR and haptic simulators in the surgical curriculum is investigated. The study starts with a historical perspective of the VR and haptic topics and is built up by answering different questions related to this topic and the implementation of simulators at the medical centres. The questions are of general concern for those developing surgical VR and haptic simulators. Suggested future work includes modelling, development and validation of the haptic forces occurring in the milling process and, based on this, implementation in the simulator system. Also, further development of the simulator should be done in close cooperation with surgeons in order to get appropriate feedback for further improvements of the functionality and performance of the simulator. / QC 20101112
|
4 |
De la conception à la commande d'une nouvelle interface haptique 4 axes hybride pneumatique électrique pour la simulation d'accouchement : Le BirthSIM / From design to control of a new 4 degrees of freedom hybrid pneumatic electric haptic interface to simulate chlidbirth delivery : BirthSIMHerzig, Nicolas 24 June 2016 (has links)
Les simulateurs d'accouchement sont des outils dédiés à la formation du personnel médical en gynécologie obstétrique. Le BirthSIM développé au laboratoire Ampère constitue une interface haptique de simulateur d'accouchement permettant de reproduire divers scénarios d'accouchement et de former les jeunes sages-femmes et obstétriciens aux différents gestes techniques nécessaires dans le cadre de leurs professions. Dans ce manuscrit, les récentes améliorations apportées au prototype du BirthSIM seront présentées. Parmi ces améliorations, deux sont particulièrement remarquables. La première concerne l'augmentation du nombre de degrés de liberté pilotés de l'interface. Ainsi, les travaux ayant permis le passage d'une interface ne comptant qu'un seul degré de liberté à quatre seront détaillés. Le BirthSIM est le seul simulateur d'accouchement qui intègre à la fois des actionneurs électriques et pneumatiques. La seconde évolution concerne le développement de lois de commande permettant d'améliorer le rendu haptique de l'interface. Les lois de commande retenues permettent d'asservir en position le BirthSIM, mais également de régler la raideur de l'interface. Ce réglage de raideur en coordonnées cartésiennes a pour objectif de reproduire le comportement de la tête fœtale en contact avec les tissus mous du bassin au cours d'une contraction. La loi de commande présentée dans ces travaux de thèse est une loi de commande non-linéaire synthétisée par backstepping. En effet, cette méthode permet de prendre en compte les phénomènes non-linéaires agissant sur le comportement des actionneurs pneumatiques. Cette commande, assurant le suivi d'une consigne de position et une modification de la raideur en temps réel à partir d'une stratégie de réglage de gain, a été testée à la fois en simulation et sur le prototype du BirthSIM. Les performances de cette commande sont également comparées à celles de lois de commande plus classiquement utilisées en robotique. / The childbirth simulators are developed for practitioner training in gynecology and obstetrics. The BirthSIM is a haptic interface which simulates various childbirth scenarios to teach obstetricians and midwives the technical delivery gestures. In this work, the latest improvements on the BirthSIM prototype will be presented. Two improvements are especially detailed. The first one consists in adding actuated degrees of freedom to the haptic interface. Thus, the works which have led to a new four degrees of freedom robot are presented. The BirthSIM is the only childbirth simulator which is actuated by electrical and pneumatic actuators. The aim of the second improvement is to synthesize control laws which improve the haptic rendering. The studied control laws allow the haptic interface to be controlled in position and its stiffness to be tuned in real time. This cartesian stiffness tuning is suitable to reproduce the behavior of the fetal head surrounded by the maternal pelvic muscles. The control law presented in this document have been obtained by the non-linear backstepping synthesis. Indeed, the non-linear phenomenons occurring in pneumatic cylinders can be taken into account by this method. The controller obtained in this work allows the BirthSIM end-effector to track a reference position but also allows the robot stiffness to be tuned in real time. The stiffness control is based on a gain tuning strategy. Finally, the performances have been evaluated in simulation and experimental tests. Those performances have also been compared to the other conventional compliant controllers of the robotic field.
|
Page generated in 0.0831 seconds