• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchungen zu MIRUP für Vektorpackprobleme

Rietz, Jürgen 17 December 2009 (has links) (PDF)
Das d-dimensionale Vektorpackproblem (d-VPP), welches aus Planungsaufgaben resultieren kann, ist eine Verallgemeinerung des eindimensionalen Zuschnittproblems (1CSP) und deshalb NP-schwer. Die stetige Relaxation, die mittels Spaltengenerierung gelöst werden kann, ergebe den optimalen Zielfunktionswert zC, während der optimale Zielfunktionswert der ganzzahligen Aufgabe zD ist. In der Dissertation werden obere Schranken für das Gap Δ = zD-zC hergeleitet und systematisch Instanzen des 1CSPs mit großem Δ (bis zu 6/5) konstruiert. Die im Teilbarkeitsfall des 1CSPs bekannte Abschätzung Δ < 2 wird zu Δ < 7/5 verschärft. Im d-VPP mit d > 1 gilt die MIRUP-Hypothese Δ < 2 nicht. Dies und die Unbeschränktheit des Wertes einer Variante bei d gegen unendlich werden an speziellen Beispielen gezeigt. Außerdem wird eine Heuristik vorgeschlagen und erprobt.
2

Untersuchungen zu MIRUP für Vektorpackprobleme

Rietz, Jürgen 18 December 2003 (has links)
Das d-dimensionale Vektorpackproblem (d-VPP), welches aus Planungsaufgaben resultieren kann, ist eine Verallgemeinerung des eindimensionalen Zuschnittproblems (1CSP) und deshalb NP-schwer. Die stetige Relaxation, die mittels Spaltengenerierung gelöst werden kann, ergebe den optimalen Zielfunktionswert zC, während der optimale Zielfunktionswert der ganzzahligen Aufgabe zD ist. In der Dissertation werden obere Schranken für das Gap Δ = zD-zC hergeleitet und systematisch Instanzen des 1CSPs mit großem Δ (bis zu 6/5) konstruiert. Die im Teilbarkeitsfall des 1CSPs bekannte Abschätzung Δ < 2 wird zu Δ < 7/5 verschärft. Im d-VPP mit d > 1 gilt die MIRUP-Hypothese Δ < 2 nicht. Dies und die Unbeschränktheit des Wertes einer Variante bei d gegen unendlich werden an speziellen Beispielen gezeigt. Außerdem wird eine Heuristik vorgeschlagen und erprobt.

Page generated in 0.0822 seconds