Spelling suggestions: "subject:"mekaniska modell""
1 |
Modeling of Energy Consumptionin Milling Process to Assess their Environmental ImpactAshok Kumar, Vasanth Kumaran, Liang, Peng January 2023 (has links)
This thesis presents a method for modeling energy consumption in the milling process to assess their environmental impact, using a simple experimental approach. The factors influencing the environmental impact in milling processes are analyzed with life cycle assessment principles, and their climate change impact is calculated with examples of dry milling experiments. The model for predicting energy consumption is inspired by the mechanistic model of milling operation. The tangential cutting force coefficients are approximated using experimental data to estimate the spindle power. The developed model can predict energy consumption for given cutting parameters and conditions. The results of the study indicate that 1) the energy consumption of the milling process estimated by the proposed mechanistic-based model aligns well with the experimentally measured results, 2) the experimental approach used to build the model is both easy and fast, and 3) the consumption of the solid cutting tool contributes the most to the environmental impact in dry milling processes. Furthermore, the analysis presented in this thesis provides insight into how to improve energy efficiency and reduce the environmental impact of milling processes. / Denna avhandling presenterar en metod för att modellera energiförbrukning i fräsningsprocessen för att bedöma deras miljöpåverkan genom en enkel experimentell metod. Faktorer som påverkar miljöpåverkan i fräsningsprocesser analyseras med principer för livscykelbedömning och deras klimatpåverkan beräknas med exempel på torrfräsningsförsök. Modellen för att förutsäga energiförbrukningen är inspirerad av den mekaniska modellen för fräsningsoperation. Koefficienter för tangentiell skärkraft approximeras med experimentella data för att uppskatta spindelkraften. Den utvecklade modellen kan förutsäga energiförbrukningen för givna skärparametrar och villkor. Resultaten visar att 1) energiförbrukningen i fräsningsprocessen uppskattad med den föreslagna mekanikbaserade modellen överensstämmer bra med experimentellt uppmätta resultat, 2) den experimentella metoden för att bygga modellen är enkel och snabb, och 3) förbrukningen av det fasta skärverktyget bidrar mest till miljöpåverkan i torrfräsningsprocesser. Analysen som presenteras i denna avhandling ger också insikt i hur man kan förbättra energieffektiviteten och minska miljöpåverkan i fräsningsprocesser.
|
2 |
Modelling of Laser Welding of Aluminium using COMSOL MultiphysicsChen, Jie January 2020 (has links)
This thesis presents a modelling approach of laser welding process of aluminium alloy from the thermo-mechanical point of view to evaluate the occurrence of hot cracking based on simulation results and relevant criteria. The model was created stepwise in COMSOL Multiphysics, starting with the thermal model where heat conduction of solid and liquid phase was computed. Then the CFD model was created by involving the driving forces of liquid motion in the weld pool, i.e. natural convection and Marangoni effect. Lastly, the temperature profile calculated by the CFD model was loaded into the mechanical model for computation of thermal stress and strain. The mechanical results were required in criteria for measuring the susceptibility of hot cracking. The main findings include that Marangoni effect plays a dominant role in generating the fluid flow and convective heat flux in the weld pool, thus enhancing the heat dissipation and lowering temperature in the workpiece. By contrast, such temperature reduction caused by the air convection, radiation and natural convection is negligible. The welding track further from the clamped side experiences smaller transversal residual stress, but it does not necessarily suggest higher susceptibility to hot cracking according to the applied criteria. It can be concluded judging from current results that these first models of laser welding process work satisfactorily. There is still a work to do to obtain the full maturity of this model due to its limitation and some assumptions made for simplicity. / Denna avhandling presenterar en modelleringsmetod för lasersvetsningsprocessen av aluminiumlegering ur termomekanisk synvinkel för att utvärdera förekomsten av het sprickbildning baserat på simuleringsresultat och relevanta kriterier. Modellen skapades stegvis i COMSOL Multiphysics, med början med den termiska modellen där värmeledning av fast och flytande fas beräknades. Sedan skapades CFD-modellen genom att involvera drivkrafterna för flytande rörelse i svetsbassängen, dvs. naturlig konvektion och Marangoni-effekt. Slutligen laddades temperaturprofilen beräknad av CFD-modellen in i den mekaniska modellen för beräkning av termisk stress och töjning. De mekaniska resultaten krävdes i kriterier för att mäta känsligheten för het sprickbildning. De viktigaste resultaten inkluderar att Marangoni-effekten spelar en dominerande roll när det gäller att generera vätskeflödet och konvektivt värmeflöde i svetsbassängen, vilket förbättrar värmeavledningen och sänker temperaturen i arbetsstycket. Däremot är sådan temperaturreduktion orsakad av luftkonvektion, strålning och naturlig konvektion försumbar. Svetsbanan längre från den fastspända sidan upplever mindre tvärgående restspänning, men det föreslår inte nödvändigtvis högre känslighet för hetsprickning enligt de tillämpade kriterierna. Man kan dra slutsatsen utifrån aktuella resultat att dessa första modeller av lasersvetsningsprocesser fungerar tillfredsställande. Det finns fortfarande ett arbete att göra för att få full mognad för denna modell på grund av dess begränsning och vissa antaganden för enkelhetens skull.
|
Page generated in 0.0579 seconds