• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of melt viscosity on thermal efficiency for single screw extrusion of HDPE

Vera-Sorroche, Javier, Kelly, Adrian L., Brown, Elaine, Gough, Tim, Abeykoon, Chamil, Coates, Philip D., Deng, J., Li, K., Harkin-Jones, E., Price, M. 29 December 2013 (has links)
Yes / In this work, a highly instrumented single screw extruder has been used to study the effect of polymer rheology on the thermal efficiency of the extrusion process. Three different molecular weight grades of high density polyethylene (HDPE) were extruded at a range of conditions. Three geometries of extruder screws were used at several set temperatures and screw rotation speeds. The extruder was equipped with real-time quantification of energy consumption; thermal dynamics of the process were examined using thermocouple grid sensors at the entrance to the die. Results showed that polymer rheology had a significant effect on process energy consumption and thermal homogeneity of the melt. Highest specific energy consumption and poorest homogeneity was observed for the highest viscosity grade of HDPE. Extruder screw geometry, set extrusion temperature and screw rotation speed were also found to have a direct effect on energy consumption and melt consistency. In particular, specific energy consumption was lower using a barrier flighted screw compared to single flighted screws at the same set conditions. These results highlight the complex nature of extrusion thermal dynamics and provide evidence that rheological properties of the polymer can significantly influence the thermal efficiency of the process. (C) 2014 The Authors. Published by Elsevier B.V. All rights reserved.
2

Thermal homogeneity and energy efficiency in single screw extrusion of polymers : the use of in-process metrology to quantify the effects of process conditions, polymer rheology, screw geometry and extruder scale on melt temperature and specific energy consumption

Vera-Sorroche, Javier January 2014 (has links)
Polymer extrusion is an energy intensive process whereby the simultaneous action of viscous shear and thermal conduction are used to convert solid polymer to a melt which can be formed into a shape. To optimise efficiency, a homogeneous melt is required with minimum consumption of process energy. In this work, in-process monitoring techniques have been used to characterise the thermal dynamics of the single screw extrusion process with real-time quantification of energy consumption. Thermocouple grid sensors were used to measure radial melt temperatures across the melt flow at the entrance to the extruder die. Moreover, an infrared sensor flush mounted at the end of the extruder barrel was used to measure non-invasive melt temperature profiles across the width of the screw channel in the metering section of the extruder screw. Both techniques were found to provide useful information concerning the thermal dynamics of the extrusion process; in particular this application of infrared thermometry could prove useful for industrial extrusion process monitoring applications. Extruder screw geometry and extrusion variables should ideally be tailored to suit the properties of individual polymers but in practise this is rarely achieved due the lack of understanding. Here, LDPE, LLDPE, three grades of HDPE, PS, PP and PET were extruded using three geometries of extruder screws at several set temperatures and screw rotation speeds. Extrusion data showed that polymer rheology had a significant effect on the thermal efficiency on the extrusion process. In particular, melt viscosity was found to have a significant effect on specific energy consumption and thermal homogeneity of the melt. Extruder screw geometry, set extrusion temperature and screw rotation speed were also found to have a direct effect on energy consumption and melt consistency. Single flighted extruder screws exhibited poorer temperature homogeneity and larger fluctuations than a barrier flighted screw with a spiral mixer. These results highlighted the importance of careful selection of processing conditions and extruder screw geometry on melt homogeneity and process efficiency. Extruder scale was found to have a significant influence on thermal characteristics due to changes in surface area of the screw, barrel and heaters which consequently affect the effectiveness of the melting process and extrusion process energy demand. In this thesis, the thermal and energy characteristics of two single screw extruders were compared to examine the effect of extruder scale and processing conditions on measured melt temperature and energy consumption. Extrusion thermal dynamics were shown to be highly dependent upon extruder scale whilst specific energy consumption compared more favourably, enabling prediction of a process window from lab to industrial scale within which energy efficiency can be optimised. Overall, this detailed experimental study has helped to improve understanding of the single screw extrusion process, in terms of thermal stability and energy consumption. It is hoped that the findings will allow those working in this field to make more informed decisions regarding set conditions, screw geometry and extruder scale, in order to improve the efficiency of the extrusion process.
3

Die Schichtbildung beim Feuerverzinken und die Eigenschaften der Zinküberzüge

Thiele, Marc 23 August 2010 (has links) (PDF)
Es wurde das Verzinkungsverhalten von Baustahl beim Stückverzinken im technisch nutzbaren Bereich untersucht. Dazu wurde das Schichtwachstum der Zinküberzüge bei Verwendung konventioneller ZnPb-Schmelze anhand von Schichtdicken und Gefügeausbildungen in Ab-hängigkeit von den relevanten Parametern ermittelt. Weiterhin wurde der Einfluss des Was-serstoffs im Stahl auf die Schichtbildung beim Feuerverzinken eingeschätzt. Das Resultat ist eine umfassende Modellvorstellung der Schichtbildungsvorgänge beim Feuerverzinken von 435°C bis 620°C. Sie erklärt das Verzinkungsverhalten von Baustahl und trägt zum Verständnis vieler Phänomene beim Feuerverzinken bei. Weiterhin wurden Überzüge aus legierten Zinkschmelzen untersucht. Die Ergebnisse wurden hinsichtlich der Wirkung der einzelnen Legierungselemente in der Zinkschmelze interpretiert. Dem Anwender wird ein Leitfaden zur Verfügung gestellt, der Vor- und Nachteile der in der Praxis verfügbaren Zinkschmelzen beschreibt.
4

Thermal homogeneity and energy efficiency in single screw extrusion of polymers. The use of in-process metrology to quantify the effects of process conditions, polymer rheology, screw geometry and extruder scale on melt temperature and specific energy consumption

Vera-Sorroche, Javier January 2014 (has links)
Polymer extrusion is an energy intensive process whereby the simultaneous action of viscous shear and thermal conduction are used to convert solid polymer to a melt which can be formed into a shape. To optimise efficiency, a homogeneous melt is required with minimum consumption of process energy. In this work, in-process monitoring techniques have been used to characterise the thermal dynamics of the single screw extrusion process with real-time quantification of energy consumption. Thermocouple grid sensors were used to measure radial melt temperatures across the melt flow at the entrance to the extruder die. Moreover, an infrared sensor flush mounted at the end of the extruder barrel was used to measure non-invasive melt temperature profiles across the width of the screw channel in the metering section of the extruder screw. Both techniques were found to provide useful information concerning the thermal dynamics of the extrusion process; in particular this application of infrared thermometry could prove useful for industrial extrusion process monitoring applications. Extruder screw geometry and extrusion variables should ideally be tailored to suit the properties of individual polymers but in practise this is rarely achieved due the lack of understanding. Here, LDPE, LLDPE, three grades of HDPE, PS, PP and PET were extruded using three geometries of extruder screws at several set temperatures and screw rotation speeds. Extrusion data showed that polymer rheology had a significant effect on the thermal efficiency on the extrusion process. In particular, melt viscosity was found to have a significant effect on specific energy consumption and thermal homogeneity of the melt. Extruder screw geometry, set extrusion temperature and screw rotation speed were also found to have a direct effect on energy consumption and melt consistency. Single flighted extruder screws exhibited poorer temperature homogeneity and larger fluctuations than a barrier flighted screw with a spiral mixer. These results highlighted the importance of careful selection of processing conditions and extruder screw geometry on melt homogeneity and process efficiency. Extruder scale was found to have a significant influence on thermal characteristics due to changes in surface area of the screw, barrel and heaters which consequently affect the effectiveness of the melting process and extrusion process energy demand. In this thesis, the thermal and energy characteristics of two single screw extruders were compared to examine the effect of extruder scale and processing conditions on measured melt temperature and energy consumption. Extrusion thermal dynamics were shown to be highly dependent upon extruder scale whilst specific energy consumption compared more favourably, enabling prediction of a process window from lab to industrial scale within which energy efficiency can be optimised. Overall, this detailed experimental study has helped to improve understanding of the single screw extrusion process, in terms of thermal stability and energy consumption. It is hoped that the findings will allow those working in this field to make more informed decisions regarding set conditions, screw geometry and extruder scale, in order to improve the efficiency of the extrusion process. / Engineering and Physical Sciences Research Council
5

The effect of materials, process settings and screw geometry on energy consumption and melt temperature in single screw extrusion

Abeykoon, Chamil, Kelly, Adrian L., Brown, Elaine, Coates, Philip D. 06 July 2016 (has links)
Yes / Polymer extrusion is an energy intensive production process and process energy e ciency has become a key concern in the current industry with the pressure of reducing the global carbon footprint. Here, knowledge of the pattern of energy usage and losses of each component in the plant is highly useful in the process energy optimization. Moreover, it is essential to maintain the melt quality while improving the energy e ciency in polymer processing. In this work, an investigation was made on the total energy consumption, drive motor energy consumption, power factor and the melt temperature profile across the die melt flow (as an indication of the melt thermal quality) of an industrial scale extruder with three di erent screw geometries, three polymer types and wide range of processing conditions (altogether 135 di erent processing situations were observed). This aims to widen the knowledge on process energy and thermal behaviors while exploring possible correlation/s between energy demand and melt quality (in terms of melt temperature fluctuations across the melt flow). The results showed that the level and fluctuations of the extruder’s power factor is particularly dependent upon the material being processed. Moreover, it seems that there is a relation between the level of energy demand of the heaters and the level of melt temperature fluctuations. While the extruder specific energy consumption decreases with increasing screw speed, specific energy consumption of the drive motor may have either increasing or decreasing behavior. Overall, this study provides new insights in a wide range on process energy demand and melt thermal quality in polymer extrusion. Moreover, further research is recommended to establish strong correlation/s between process energy consumption and melt thermal quality which should help to enhance process control and hence the product quality in single screw polymer extrusion.
6

Thermal optimisation of polymer extrusion using in-process monitoring techniques

Vera-Sorroche, Javier, Kelly, Adrian L., Brown, Elaine, Coates, Philip D., Karnachi, N., Harkin-Jones, E., Li, K., Deng, J. January 2013 (has links)
No / Polymer extrusion is an energy intensive process, which is often run at less than optimal conditions. The extrusion process consists of gradual melting of solid polymer by thermal conduction and viscous shearing between a rotating screw and a barrel; as such it is highly dependent upon the frictional, thermal and rheological properties of the polymer. Extruder screw geometry and extrusion variables should ideally be tailored to suit the properties of individual polymers, but in practice this is rarely achieved due to the lack of understanding of the process. Here, in-process monitoring techniques have been used to characterise the thermal dynamics of the extrusion process. Novel thermocouple grid sensors have been used to measure melt temperature fields within flowing polymer melts at the entrance to an extruder die in conjunction with infra-red thermometers and real-time quantification of energy consumption. A commercial grade of polyethylene has been examined using three extruder screw geometries at different extrusion operating conditions to understand the process efficiency. Extruder screw geometry, screw rotation speed and set temperature were found to have a significant effect on the thermal homogeneity of the melt and process energy consumed. (C) 2012 Elsevier Ltd. All rights reserved.
7

Melt temperature field measurement in single screw extrusion using thermocouple meshes.

Brown, Elaine, Kelly, Adrian L., Coates, Philip D. January 2004 (has links)
No / The development and validation of a sensor for extrusion melt temperature field measurement is described. A grid of opposing thermocouple wires was constructed and held in position by a supporting frame. Wires were joined together at crossing points to form thermocouple junctions, which were computer monitored. The mesh was used to monitor melt temperature fields during single screw extrusion at the die entrance. Design and construction of the mesh is described in addition to experimental optimization of wire diameter and junction forming. Calibration of the sensor and potential measurement errors including shear heating effects are discussed. Initial results from single screw extrusion are presented for a commercial grade of low density polyethylene using five- and seven-junction thermocouple meshes. The dependence of melt temperature profile on screw speed is illustrated. At low screw speeds melt temperature profiles were flat in shape and higher than set wall temperatures. At higher screw speeds the profiles became more pointed in shape. Use of higher resolution sensors exposed more complex temperature profiles with shoulder regions.
8

Die Schichtbildung beim Feuerverzinken und die Eigenschaften der Zinküberzüge

Thiele, Marc 09 July 2010 (has links)
Es wurde das Verzinkungsverhalten von Baustahl beim Stückverzinken im technisch nutzbaren Bereich untersucht. Dazu wurde das Schichtwachstum der Zinküberzüge bei Verwendung konventioneller ZnPb-Schmelze anhand von Schichtdicken und Gefügeausbildungen in Ab-hängigkeit von den relevanten Parametern ermittelt. Weiterhin wurde der Einfluss des Was-serstoffs im Stahl auf die Schichtbildung beim Feuerverzinken eingeschätzt. Das Resultat ist eine umfassende Modellvorstellung der Schichtbildungsvorgänge beim Feuerverzinken von 435°C bis 620°C. Sie erklärt das Verzinkungsverhalten von Baustahl und trägt zum Verständnis vieler Phänomene beim Feuerverzinken bei. Weiterhin wurden Überzüge aus legierten Zinkschmelzen untersucht. Die Ergebnisse wurden hinsichtlich der Wirkung der einzelnen Legierungselemente in der Zinkschmelze interpretiert. Dem Anwender wird ein Leitfaden zur Verfügung gestellt, der Vor- und Nachteile der in der Praxis verfügbaren Zinkschmelzen beschreibt.
9

Dynamic modelling of die melt temperature profile in polymer extrusion: Effects of process settings, screw geometry and material

Abeykoon, Chamil, Martin, P.J., Li, K., Kelly, Adrian L. January 2014 (has links)
No / Extrusion is one of the major methods for processing polymeric materials and the thermal homogeneity of the process output is a major concern for manufacture of high quality extruded products. Therefore, accurate process thermal monitoring and control are important for product quality control. However, most industrial extruders use single point thermocouples for the temperature monitoring/control although their measurements are highly affected by the barrel metal wall temperature. Currently, no industrially established thermal profile measurement technique is available. Furthermore, it has been shown that the melt temperature changes considerably with the die radial position and hence point/bulk measurements are not sufficient for monitoring and control of the temperature across the melt flow. The majority of process thermal control methods are based on linear models which are not capable of dealing with process nonlinearities. In this work, the die melt temperature profile of a single screw extruder was monitored by a thermocouple mesh technique. The data obtained was used to develop a novel approach of modelling the extruder die melt temperature profile under dynamic conditions (i.e. for predicting the die melt temperature profile in real-time). These newly proposed models were in good agreement with the measured unseen data. They were then used to explore the effects of process settings, material and screw geometry on the die melt temperature profile. The results showed that the process thermal homogeneity was affected in a complex manner by changing the process settings, screw geometry and material. (C) 2013 Elsevier Inc. All rights reserved.
10

Heat transfer process between polymer and cavity wall during injection molding / Wärmeübergang zwischen Polymerwerkstoff und Werkzeugwand beim Spritzgießprozess

Liu, Yao 22 January 2015 (has links) (PDF)
Injection molding is one of the most commonly applied processing methods for plastic components. Heat transfer coefficient (HTC), which describes the heat conducting ability of the interface between a polymer and cavity wall, significantly influences the temperature distribution of a polymer and mold during injection molding and thus affects the process and quality of plastic products. This thesis focuses on HTC under diverse processing situations. On the basis of the heat conducting principle, a theoretical model for calculating HTC was presented. Injection mold specially used for measuring and calculating HTC was designed and fabricated. Experimental injection studies under different processing conditions, especially different surface roughness, were performed for acquiring necessary temperature data. The heat quantity across the interface and HTC between a polymer and cavity wall was calculated on the basis of experimental results. The influence of surface roughness on HTC during injection molding was investigated for the first time. The factors influencing the HTC were analyzed on the basis of the factor weight during injection molding. Subsequently FEM (Finite element method) simulations were carried out with observed and preset value of HTC respectively and the relative crystallinity and part density were obtained. In the comparison between results from simulation and experiment, the result calculated with observed HTC shows better agreement with actually measured value, which can verify the reliability and precision of the injection molding simulation with observed HTC. The results of this thesis is beneficial for understanding the heat transfer process comprehensively, predicting temperature distribution, arranging cooling system, reducing cycle time and improving precision of numerical simulation. / Das Spritzgießen ist eines der am häufigsten angewandten Verarbeitungsverfahren zur Herstellung von Kunststoffkomponenten. Der Wärmedurchgangskoeffizient (WDK), welcher den Wärmeübergang zwischen Kunststoff und Werkzeugwand beschreibt, beeinflusst während des Spritzgießens maßgeblich die Temperaturverteilung im Bauteil und dem Werkzeug und folglich den Prozess und die Qualität der Kunststoffprodukte. Der Inhalt dieser Arbeit beschäftigt sich mit dem WDK unter verschiedenen Prozessbedingungen. Auf Grundlage des Wärmeleitungsprinzips wurde ein theoretisches Modell für die Berechnung des WDK vorgestellt. Es wurde dazu ein Spritzgießwerkzeug konstruiert und hergestellt, welches Messungen zur späteren Berechnung des WDK ermöglicht. Praktische Spritzgießversuche unter verschiedenen Prozessbedingungen, insbesondere unterschiedlicher Oberflächenrauheit, wurden für die Erfassung der erforderlichen Temperaturdaten durchgeführt. Auf Grundlage der experimentellen Ergebnisse wurde der Wärmeübergang zwischen dem Polymer und der Werkzeugwand berechnet. Der Einfluss der Oberflächenrauhigkeit auf den WDK wurde hierbei zum ersten Mal untersucht. Auf Grundlage des Bauteilgewichtes wurden anschließend die Faktoren, die den WDK beeinflussen, berechnet. Des Weiteren wurden FEM-Simulationen (Finite Element Methode) mit dem gemessenen und dem voreingestellten WDK durchgeführt und daraus der Kristallinitätsgrad und die Bauteildichte gewonnen. Der Vergleich zwischen den realen Ergebnissen und der Simulation zeigt, dass die Berechnungen mit dem gemessenen WDK eine bessere Übereinstimmung mit den realen Werten aufweist, was die Zuverlässigkeit und Präzision der Spritzgusssimulation bestätigt. Die Ergebnisse dieser Arbeit tragen zum umfassenden Verständnis des Wärmeübergangs im Spritzgießprozess, zur Vorhersage der Temperaturverteilung, zur Auslegung des Kühlsystems, zur Reduzierung der Zykluszeit und zur Verbesserung der Genauigkeit der numerischen Simulation bei.

Page generated in 0.0753 seconds