• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Phase equilibria and nucleation in condensed phases a statistical mechanical study /

Apte, Pankaj A., January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Includes bibliographical references (p. 126-132).
12

Melt Initiation and Propagation in Polycrystalline Thin Films

Pan, Wenkai January 2021 (has links)
Melting of elemental solids can be identified and appreciated as a particularly simple example of discontinuous phase transitions involving condensed phases. Motivated, on the one hand, by the need to improve the microstructural quality of laser-crystallized columnar-grained polycrystalline Si films for manufacturing advanced AMOLED displays and, on the other hand, to investigate the fundamental details associated with phase transformations transpiring in condensed systems, this thesis examines the initiation and evolution of melting in polycrystalline thin films. Distilling the essence of the classical nucleation theory and extending its description to address more general cases of phase initiation and evolution, a general thermodynamic method based on capillarity effect is developed and applied to determine the shape of solid/liquid interfaces that are in mechanical equilibrium. We first explicitly identify and build our analysis based on how the shape of solid/liquid interfaces must comply with the contact angle conditions at the junctions and also the property of constant mean curvature. Bi-crystal and tri-crystal models are presented to capture the microstructural features such as junctions and vertices of interfaces in polycrystalline thin films. At each of the potential melt initiating sites, the parameter space of contact angles is divided into domains depending on the shape of the solid/liquid interface that can be established in mechanical equilibrium. Melting initiation mechanisms are subsequently determined based on the permissible shape for each domain. This analysis is further extended to the edges and corners of embedded cubic crystals (with nonidentical contact angles at different faces). Secondly, in order to facilitate the thermodynamic analysis of the melting initiation and interface propagation, we extend our curvature-evolution-centric method to identify and develop what we consider as the central function for discontinuous phase transitions. Specifically, starting with a local governing condition, identifies and builds on two curvatures: ρ^E (𝑉) and ρ* (𝑇). ρ^E (𝑉) captures the evolution of the mean curvature of the solid/liquid interface as a function of liquid volume for the case in which the mechanical equilibrium condition is satisfied, whereas ρ* (𝑇) incorporates the temperature effect on the difference between the volumetric free energy of solid and liquid phases using the corresponding equilibrium mean curvature. We define and identify the interface driving stress function ƒ(𝑉,𝑇)=∂𝐺/∂𝑉=σ(ρ^E (𝑉)-ρ* (𝑇)) of the phase transition as being an important fundamental quantity, which can be directly derived by taking the difference of the two curvature terms. In contrast to the conventional analysis that requires integration of volumetric and interfacial free energy terms over various geometric domains to derive the total free energy as a function of volume for a given temperature, this formation completely disentangles geometry from the thermodynamic aspects of the phase transition and allows them to be treated separately. In addition to providing essentially all relevant thermodynamic information about the phase initiation and evolution, the above method readily permits the use of powerful general-purpose numerical tools to calculate the potentially complex geometry of the solid/liquid and other interfaces and obtain ρ^E (𝑉) directly as the output. Plotting the ρ^E (𝑉) function together with the temperature-dependent iso-curvature line, ρ* (𝑇), unveils the critical thermodynamic information regarding the melting transition at the temperature, such as whether equilibrium points exist, the number of equilibrium points, their stability, and their corresponding volumes. The change of free energy as a function of liquid volume can be derived through integration of the interface driving stress function. The velocity of the solid/liquid interface is simply proportional to the interface driving stress function. The application of this method is demonstrated in both shape-preserving (which we term as isomorphic) and shape-changing (which we term as non-isomorphic) examples. The analysis and findings presented in this thesis are relevant and useful for understanding discontinuous phase transitions, in general, and can be particularly so for small, confined, and embedded systems that are increasingly being utilized in modern technologies.
13

2-D Melting in Excimer-Laser Irradiated Polycrystalline Silicon Films

Wong, Vernon January 2021 (has links)
This thesis examines the excimer-laser-induced melting of ELA-prepared silicon films using in situ transient reflectance and transmission analysis. The results clearly show that these polycrystalline films, which consist of columnar grains in contact with SiO₂, can melt in a largely and remarkably 2-D manner. Based on the presently and previously obtained experimental results, as well as considering the thermal, thermodynamic, and kinetic aspects of the melting-transition-relevant details, we suggest a model that consists of grain-boundary-initiated melting, followed by lateral melting proceeding into the transiently superheated interior of the grains. Additional experiments are performed which demonstrate how this 2-D melting behavior at least stems intrinsically from the presence in the material of melt-prone grain boundaries and superheating-permitting Si/SiO₂ interfaces. Next, the phase and temperature evolutions of the irradiated films are investigated using a numerical simulation program, which incorporates key material, thermodynamic, and kinetic parameters. We find that the center portion of the grains during (partial) melting (1) corresponds to, especially at the SiO₂-passivated surface, the hottest regions of the films during rapid heating, and (2) remains entirely solid throughout the thickness of the film, as the maximum temperature sustained in these unmelted solids remains well below the superheating limit of silicon at the Si/SiO₂ interface. Lastly, we discuss, and substantiate with results obtained from numerical simulations, the role that the manifested dimensionality of melting plays in dictating the efficiency with which the ELA crystallization technique can generate microstructurally uniform polycrystalline materials. The current discovery regarding the 2-D nature of melting should be recognized and appreciated as a critical process-enabling element for ELA, as the scenario permits microstructure evolution of the grains to take place in an effective manner.
14

Novel thermotropic liquid crystals possessing a benzo[b]furan unit

Friedman, Mark Richard January 2001 (has links)
No description available.
15

The melting point and viscosity of nickel smelter slags

Ducret, Andrew Charles Unknown Date (has links) (PDF)
Western Mining Corporation produces nickel matte at the Kalgoorlie Nickel Smelter(KNS)from nickel sulphide concentrates within an integrated flash smelter.
16

Confinement effect on semiconductor nanowires properties

Nduwimana, Alexis 02 November 2007 (has links)
Confinement effect on semiconductor nanowires properties. Alexis Nduwimana 100 pages Directed by Dr. Mei-Yin Chou We study the effect of confinement on various properties of semiconductor nanowires. First, we study the size and direction dependence of the band gap of germanium nanowires. We use the density functional theory in the local density approximation. Results shows that the band gap decreases with the diameter The susceptibility of these nanowires is also computed. Second, we look at the confinement effect on the piezoelectric coefficients of ZnO and AlN nanowires. The Berry phase method is used. It is found that depending on passivation, thepiezoelectric effect can decrease or increase. Finally, we study the size and direction dependence of the melting temperature of silicon nanowires. We use the molecular dynamics with the Stillinger Weber potential. Results indicate that the melting temperature increases with the nanowire diameter and that it is direction dependent.
17

Effect of disorder on the melting phase transition

Storey, Marianne January 1999 (has links)
No description available.
18

Crescimento de cristais de LiY sub(1-x) TR sub(x) F sub(4):Nd (TR=Lu ou Gd) para aplicacoes opticas

RANIERI, IZILDA M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:47Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:07:17Z (GMT). No. of bitstreams: 1 07149.pdf: 7899411 bytes, checksum: 6ba368602f98f29e9401ef54276cdb45 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
19

Crescimento de cristais de LiY sub(1-x) TR sub(x) F sub(4):Nd (TR=Lu ou Gd) para aplicacoes opticas

RANIERI, IZILDA M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:47Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:07:17Z (GMT). No. of bitstreams: 1 07149.pdf: 7899411 bytes, checksum: 6ba368602f98f29e9401ef54276cdb45 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP

Page generated in 0.0893 seconds