• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural dynamics and membrane interaction of the chloride intracellular channel protein, CLIC1

Nathaniel, Christos 06 March 2008 (has links)
ABSTRACT The Chloride Intracellular Channel (CLIC) proteins are a family of amphitropic proteins that can convert from soluble to integral membrane forms. CLIC1 is a member of this family that functions as a chloride channel in the plasma and nuclear membranes of cells. Although high-resolution structural data exists for the soluble form of monomeric CLIC1, not much is known about the integral membrane forms’ structure. The exact mechanism and signals involved in the conversion of the soluble form to membrane-inserted form are also not clear. Studies were undertaken in the absence and presence of membrane models. Analysis of the structure and stability of CLIC1 in the absence of membrane investigated the effect of possible signals or triggers that may play a crucial role in the conversion of the soluble form to integral membrane form. Exposing CLIC1 to oxidizing conditions results in the formation of a dimeric form. The CLIC1 dimer was found to be less stable than the monomeric form based on unfolding kinetic studies. The stability of the dimer was also less influenced by salt concentration, compared with the monomer. The effect of pH on the structure of CLIC1 is of physiological relevance since the movement of soluble CLIC1 in the cytoplasm or nucleoplasm toward the membrane will involve the protein being exposed to a lower pH micro-environment. Hydrogen exchange mass spectrometry was used to study the structural dynamics of CLIC1 at pH 7.0 and pH 5.5. At neutral pH, domain II is more stable than the more flexible thioredoxin domain I. The thioredoxin-fold therefore is more likely to unfold and rearrange to insert into membranes. Because of the high stability of domain II this region is probably where the folding nucleus of the protein is. At pH 5.5 it was found that the a1, a3 and a6 helices, which are spatially adjacent to one another across the domain interface, were destabilized. This destabilization may be the trigger for CLIC1 to unfold and rearrange into a membrane insertion-competent form. The role of the primary sequence and unique three-dimensional structure of CLIC1 in membrane insertion was investigated in a bioinformatics-based study that looked at conserved residue features such as hydropathy and charge. Hidden helical propensities and Ncapping motifs in the a1-b2 region were found, which may have important implications for locating putative transmembrane regions. Analysis of the structure and thermodynamics of CLIC1 interacting with membranes investigated changes in secondary structure, tertiary structure, hydrodynamic volume and thermodynamics when CLIC1 is exposed to membrane-mimicking models. The effect of a variety of conditions such as pH and redox, cysteine-modifiying agents (NEM), ligands (GSH), and inhibitors (IAA) on CLIC1 membrane interaction were studied. It was found that CLIC1 interacted with membranes more favourably at lower pH and that NEM completely inhibited CLIC1 interaction with micelles.
2

Investigation of amino-tail translocation by the conserved YidC, Sec and independent pathways

Shanmugam, Sri Karthika 18 June 2019 (has links)
No description available.
3

Studies on Substrate Determinants of YidC/Sec Pathway and Insertion/Folding of Membrane Proteins in E.Coli

Zhu, Lu 20 December 2012 (has links)
No description available.
4

Intra- and intermolecular interactions in proteins : Studies of marginally hydrophobic transmembrane alpha-helices and protein-protein interactions.

Hedin, Linnea E January 2010 (has links)
Most of the processes in a living cell are carried out by proteins. Depending on the needs of the cell, different proteins will interact and form the molecular machines demanded for the moment. A subset of proteins called integral membrane proteins are responsible for the interchange of matter and information across the biological membrane, the lipid bilayer enveloping and defining the cell. Most of these proteins are co-translationally integrated into the membrane by the Sec translocation machinery. This thesis addresses two questions that have emerged during the last decade. The first concerns membrane proteins: a number of α-helices have been observed to span the membrane in the obtained three-dimensional structures even though these helices are predicted not to be hydrophobic enough to be recognized by the translocon for integration. We show for a number of these marginally hydrophobic protein segments that they indeed do not insert well outside of their native context, but that their local sequence context can improve the level of integration mediated by the translocon. We also find that many of these helices are overlapped by more hydrophobic segments. We propose, supported by experimental results, that the latter are initially integrated into the membrane, followed by post-translational structural rearrangements. Finally, we investigate whether the integration of the marginally hydrophobic TMHs of the lactose permease of Escherichia coli is facilitated by the formation of hairpin structures. However our combined efforts of computational simulations and experimental investigations find no evidence for this. The second question addressed in this thesis is that of the interpretation of the large datasets on which proteins that interact with each other in a cell. We have analyzed the results from several large-scale investigations concerning protein interactions in yeast and draw conclusions regarding the biases, strengths and weaknesses of these datasets and the methods used to obtain them. / At the time of the doctoral defense the following publications were not published and had a status as follows: Paper 2: In press; Paper 4 Manuscript.
5

On the molecular basis of α-synuclein aggregation on phospholipid membranes in the presence and absence of anle138b / Zur molekularen Basis der α-Synuclein Aggregation an Phospholipid Membranen in der Gegenwart und Abwesenheit von anle138b

Antonschmidt, Leif 27 November 2021 (has links)
No description available.
6

Mechanism of Action of Insecticidal Crystal Toxins from <i>Bacillus thuringiensis:</i> Biophysical and Biochemical Analyses of the Insertion of Cry1A Toxins into Insect Midgut Membranes

Nair, Manoj Sadasivan 11 September 2008 (has links)
No description available.
7

Beta-Peptide Helices As Transmembrane Domains: Aggregation, Recognition and Lipid-Peptide Interaction

Banerjee, Amartya 21 September 2018 (has links)
প্লাজমা ঝিল্লি একটি প্রাথমিক কার্যকরী ইউনিট হিসাবে একটি কোষ দক্ষ কার্যকরী জন্য অপরিহার্য হিসাবে গণ্য করা হয়। এই ঝিল্লিগুলি বহিরাগত কোষের কোষের ভিতরের অংশটিকে পৃথক করে এবং পাশাপাশি এটি জুড়ে চলমান নিয়ন্ত্রনের বাধা হিসাবে কাজ করে। প্লাজমা ঝিল্লিগুলি বিভিন্ন বিভিন্ন উপাদানের সাথে গঠিত, তবে সবার মধ্যে, ঝিল্লি প্রোটিনগুলিকে বৈজ্ঞানিক সম্প্রদায়ের দ্বারা প্লাজমা ঝিল্লির প্রধান কাঠামোগত এবং কার্যকরী স্তম্ভগুলির মধ্যে সর্বসম্মতিক্রমে গ্রহণ করা হয়। বৈজ্ঞানিক গবেষণায়, ঝিল্লী প্রোটিনগুলির কার্যকারিতা গুরুতর রোগের জন্য দায়ী বলে মনে করা হয়েছে। সুতরাং, এটি কৃত্রিম ট্রান্সমেম্রেন প্রোটিন ডোমেনগুলি ডিজাইন এবং বিকাশের জন্য একটি দুর্দান্ত বৈজ্ঞানিক আগ্রহ রয়েছে যা স্বাভাবিকের ত্রুটিগুলির সমাধান করতে সক্ষম। এই প্রোটিন ডোমেনগুলির ভাঁজ গঠন এবং ট্রান্সমেমব্রেন গতিবিদ্যা পিছনে আণবিক শক্তি এবং অন্যান্য পদার্থ-রাসায়নিক প্রক্রিয়াগুলি বোঝা হালনাগাদকৃত কৃত্রিম ট্রান্সমিম্ব্রেন প্রোটিন ডোমেনগুলি বিকাশের প্রক্রিয়ার অবিচ্ছেদ্য অংশ। গত দুই দশক ধরে, বিটা-পেপটাইডগুলি আরও প্রতিশ্রুতিশীল পেপটিডোমিম্যাটিক মোটিফগুলির মধ্যে একটি হিসাবে বিবর্তন হয়েছে। প্রোটিলাইটিক হ্রাসের বিরুদ্ধে অসাধারণ স্থিতিশীলতা এবং স্থিতিশীল হেলিকাল সেকেন্ডারি স্ট্রাকচার যেমন 14 -12- এবং বিকল্প 10 / 1২-হেলিসেসগুলি 4-6 এমিনো এসিডগুলি তৈরি করার ক্ষমতা, এর পিছনে দুটি প্রধান কারণ peptidomimetics মধ্যে β-peptides এর বিমোচন এন্ট্রি। অন্যান্য গুরুত্বপূর্ণ প্যারামিটারগুলির পাশাপাশি পেপটাইডের হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তটি ট্রান্সমেম্রেন সন্নিবেশ এবং বিস্তারের ক্ষেত্রে গুরুত্বপূর্ণ ভূমিকা বলে মনে করা হয়। পেপটাইডগুলির হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তের সরাসরি পরীক্ষামূলক সিদ্ধান্ত অত্যন্ত চ্যালেঞ্জিং হচ্ছে, হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তের সম্ভাব্য প্রভাবগুলি কেবলমাত্র তাত্ত্বিকভাবে প্রস্তাবিত। অতএব, এই থিসিসের প্রধান উদ্দেশ্যগুলি ট্রান্সমেম্রেন সন্নিবেশ এবং বিস্তারের পাশাপাশি পরোক্ষ পরীক্ষার মাধ্যমে সেলুলার উপসর্গের মধ্যে হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তের সম্ভাব্য ভূমিকা পালন করা। সাধারণভাবে, β-peptides নির্দিষ্ট হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্ত থাকে তবে প্রাকৃতিকভাবে ঘটমান α-peptide analogues এর তুলনায় বিপরীত দিকে থাকে। ধারণাটি হল বিটা-পেপটাইডের একটি ধরণের সনাক্তকরণ এবং সংশ্লেষ করা যার প্রায় মোট কোনও হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্ত নেই এবং β-peptides সহ এবং হেলিক্যাল ম্যাক্রো-ডিপোল ছাড়া ট্রান্সমেমব্রেন সন্নিবেশ স্টাডিজগুলি অন্যান্য সমস্ত পরামিতিগুলিকে ধ্রুবক রাখে। ক্ষেত্রে, তারা ঝিল্লি সন্নিবেশের জন্য কোন ডিফারেনশিয়াল ক্ষমতা প্রদর্শন করে, এটি পরীক্ষামূলকভাবে নিজ নিজ পদার্থ-রাসায়নিক ঘটনায় হেলিক্যাল ম্যাক্রো-ডিপোলের ভূমিকা নির্দেশ করবে। ব্যাপক গবেষণার পরে, বিকল্প β3 / β2-amino অ্যাসিডের সংযোজিত বিকল্প 10/12-হেলিকাল β-peptides তাদের অনন্য রূপান্তরিত অভিযোজন কারণে সামগ্রিক অলঙ্কৃত হেলিক্যাল ম্যাক্রো-ডিপোল পাওয়া যায় নি। অতএব, বিভিন্ন ধরণের β-peptides সহ 14-, 12- এবং বিকল্প 10/12-হেলিক্যাল পেপটাইড তুলনীয় ট্রান্সমেম্রেন দৈর্ঘ্য এবং ক্রম সহ বিভিন্ন সিন্থেটিক কৌশল মিশ্রিত করে সংশ্লেষিত করার পরিকল্পনা করা হয়েছে, যেমন মাইক্রোওয়েভ সহায়তায় ম্যানুয়াল SPPS, অ- মাইক্রোওয়েভ সহায়তায় ম্যানুয়াল SPPS, এবং ফ্লুরোস-ট্যাগ সংযুক্ত তরল ফেজ পেপটাইড সংশ্লেষণ। পরের ধাপে, পেপাইডাইডগুলির ট্রান্সমেমব্রেন সন্নিবেশ হাইড্রোফোবিক মাইক্রো-এনভায়রনমেন্ট সংবেদনশীল ট্রপ-ফ্লোরেসেন্স স্পেকট্রোস্কপি দ্বারা পরীক্ষা করা হবে। তিনটি ভিন্ন লিপিড, ডিএলপিসি / ডিএমপিসি / পিওপিসি এর একই গোষ্ঠীটি বিভিন্ন 14-, 12-এবং বিকল্প 10/12-হেলিক্যাল পেপাইডাইডের জন্য তুলনামূলক দৈর্ঘ্যের সাথে এইভাবে নির্বাচিত হয় যে নেতিবাচক হাইড্রোফোবিক মেলেম্যাচ ধীরে ধীরে একটি প্রায় পুরোপুরি hydrophobic ম্যাচিং পরিস্থিতি। এটি ভালভাবে জানা গেছে যে নেতিবাচক হাইড্রোফোবিক মেলেম্যাচের থ্রেশহোল্ড মানের উপরে ট্রান্সমেমব্রেন সন্নিবেশ সম্ভব নয়। অন্য দিকে, ইথানল মত শর্ট চেইন অ্যালকোহল, অ্যাসিড চেইন interdigitating দ্বারা লিপিড ঝিল্লি বেধ কমানোর একটি উচ্চারণ প্রভাব ভোগ করতে পরিচিত। অতএব, ETOH এর ক্রমবর্ধমান বৃদ্ধি ঘনত্বটি বিভিন্ন পেপটাইডের জন্য ব্যবহার করা হবে এবং একই লিপিডের জন্য একই পেপাইডাইডগুলির জন্য প্রতিটি পেপাইডাইডের জন্য প্রয়োজনীয় ন্যূনতম থ্রেশহোল্ড ঘনত্বের অনুরূপ নেতিবাচক হাইড্রোফোবিক মেলেম্যাচটি সাবধানে ন্যূনতম ক্ষতিপূরণ নেতিবাচক ক্ষতিপূরণ হিসাবে পর্যবেক্ষণ করা হবে। Trp-fluorescence বর্ণালী ক্রিয়ার সাহায্যে সফল ট্রান্সমেমব্রেন সন্নিবেশের জন্য অপরিসীম প্রয়োজন। এই পরীক্ষামূলক ফলাফল থেকে, এই সিদ্ধান্তে পৌঁছানো সম্ভব হবে যে পেপাইডাইডটি ETOH- এর আরো কম ঘনত্বের প্রয়োজন, যা নেতিবাচক মেলামেশের উচ্চতর ক্ষতিপূরণ, লিপিড ঝিল্লিতে পুনর্গঠন করতে সফলভাবে, ট্রান্সমেম্রেন সন্নিবেশ এবং বিস্তারের দিকে কম প্রবণ। ক্ষেত্রে, হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তের সাথে এবং পেপাইডাইডগুলি এই আচরণের প্রতি কোনও ডিফারেনশিয়াল প্রবণতা প্রদর্শন করে, এটি পরোক্ষভাবে নির্দেশ করে এবং পরীক্ষামূলকভাবে ট্রান্সমেম্রেন সন্নিবেশ এবং স্প্যানিংয়ের মধ্যে হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তের উল্লেখযোগ্য ভূমিকা যাচাই করবে (যেহেতু পেপাইডাইডগুলির মধ্যে প্রধান পার্থক্য হল হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তের উপস্থিতি এবং অনুপস্থিতি)। তাছাড়া, লিপিড পরিবেশের অভ্যন্তরে যখন চারিত্রিক হেলিক্যাল প্যাটার্নটি রক্ষণাবেক্ষণ করা হয় কিনা তা ব্যাখ্যা করার জন্য, বিভিন্ন পেপাইডাইডগুলির দ্বিতীয় হেলিক্যাল কাঠামো সমাধান এবং পাশাপাশি অভ্যন্তরীণ লিপিড ভিসিক্যালগুলিতে নির্ধারণ করা হবে। তাপমাত্রা নির্ভর সিডি-স্পেকট্রসকপি দ্বারা সমাধান হিসাবে তুলনায় লিপিড vesicles ভিতরে যখন 14- এবং 10/12-হেলিক্যাল পেপটাইড স্থিতিশীলতা পরিবর্তন করা হয় কিনা তা পরীক্ষা করা হবে। হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তটি সমাধান বা অভ্যন্তরীণ লিপিড vesicles মধ্যে সেকেন্ডারি হেলিকাল কাঠামো স্থিতিশীল করতে কোনো প্রভাব আছে কিনা তাও ইঙ্গিত করে। অবশেষে, 6-অ্যামিনো অ্যাসিড দীর্ঘ শৃঙ্খল চেইন 14-হেলিকাল এবং 10 / 1২-হেলিকাল 5 (6) -ফ্যাম সংযুক্ত পেপটাইডগুলি মানব ব্রোঞ্চিয়াল এডেনোকার্কিনোমা সেল লাইন A549 ব্যবহার করে সেলুলার আপটেক স্টাডিজের জন্য সংশ্লেষিত হয়। প্রথমটি ক্লোজোজেনিক অ্যাস এবং এমটিটি-অ্যাস দ্বারা একই কোষ লাইনে সাইটোটক্সিসটিটি পরীক্ষা করা হয়। যদি 1 μM ঘনত্ব না হওয়া পর্যন্ত অ-সাইটোটক্সিক পাওয়া যায়, তাহলে ফ্লোরোসেন্স অ্যাক্টিভেটেড সেল সোর্সিং (FACS) দ্বারা পরিমাণগত সেলুলার উত্তোলনের দক্ষতার দিকে আরও গবেষণা 14- এবং বিকল্প 10/12-হেলিক্যাল পেপাইডাইডগুলি হয়। একটি সুপরিচিত কোষ তীক্ষ্ণ পেপটাইড, এইচআইভি -1 ট্যাট, একটি রেফারেন্স মান হিসাবে ব্যবহৃত হয়। দুটি লক্ষ্য পেপটাইডগুলির মধ্যে সেলুলার আপটেক কার্যকারিতাগুলির মধ্যে কোন পার্থক্য পরীক্ষামূলকভাবে নির্দেশ করবে যে হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তটি ট্রান্সমেমব্রেন সন্নিবেশ এবং বিস্তারকে প্রভাবিত করে না তবে সেলুলার অ্যাকটেককেও নিয়ন্ত্রণ করে। FACS ফলাফলগুলি নিশ্চিত এবং সমর্থন করার জন্য, পেপাইডাইডগুলি কন confocal লেজার স্ক্যানিং ফ্লুরোসেন্স মাইক্রোস্কপি অধীনে দৃশ্যমান হবে। মাইক্রোস্কোপি ইমেজিং প্রদর্শন করবে যে টার্গেট পেপাইডগুলি প্রকৃতপক্ষে সেল অনুপ্রবেশের মাধ্যমে অভ্যন্তরীণ হয় কিনা বা শুধুমাত্র ঝিল্লিতে আটকা পড়ে। উপরন্তু, যদি কোন লক্ষ্য β-peptides উল্লেখযোগ্য কোষ অনুপ্রবেশ ক্ষমতা পাওয়া যায়, এটি নতুনত্ব, হাইড্রোফোবিক, uncharged সেল ভেতরে পেপটাইড (সিপিপি) প্রার্থী যারা proteases উপস্থিতি স্থিতিশীল স্থিতিশীল দিকে একটি নতুন বর্ণমালা খুলতে হবে। অবশেষে, এই সমস্ত গবেষণাগুলি পরীক্ষামূলকভাবে ট্রান্সমেম্রেন সন্নিবেশ, বিস্তার এবং সেলুলার উপসাগরীয় অঞ্চলে ঝিল্লি প্রোটিন ডোমেনের হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তের নিয়ন্ত্রক প্রভাবের উপর আলোকপাত করবে। এই তথ্যটি এই গুরুত্বপূর্ণ পদার্থ-রাসায়নিক ঘটনাগুলিতে পেপটাইড হেলিক্যাল ম্যাক্রো-ডিপোল মুহূর্তের প্রভাবকে মোকাবেলা করবে এবং β-পেপটাইড ভিত্তিক মডেল ট্রান্সমেম্রেন ডোমেন সিস্টেমগুলি পাশাপাশি β-পেপটাইড-ভিত্তিক নতুন প্রজন্মের কোষ তীব্র পেপটাইডগুলি ডিজাইনে সহায়তা করবে।
8

Structural modelling of transmembrane domains

Kelm, Sebastian January 2011 (has links)
Membrane proteins represent about one third of all known vertebrate proteins and over half of the current drug targets. Knowledge of their three-dimensional (3D) structure is worth millions of pounds to the pharmaceutical industry. Yet experimental structure elucidation of membrane proteins is a slow and expensive process. In the absence of experimental data, computational modelling tools can be used to close the gap between the numbers of known protein sequences and structures. However, currently available structure prediction tools were developed with globular soluble proteins in mind and perform poorly on membrane proteins. This thesis describes the development of a modelling approach able to predict accurately the structure of transmembrane domains of proteins. In this thesis we build a template-based modelling framework especially for membrane proteins, which uses membrane protein-specific information to inform the modelling process.Firstly, we develop a tool to accurately determine a given membrane protein structure's orientation within the membrane. We offer an analysis of the preferred substitution patterns within the membrane, as opposed to non-membrane environments, and how these differences influence the structures observed. This information is then used to build a set of tools that produce better sequence alignments of membrane proteins, compared to previously available methods, as well as more accurate predictions of their 3D structures. Each chapter describes one new piece of software or information and uses the tools and knowledge described in previous chapters to build up to a complete accurate model of a transmembrane domain.

Page generated in 0.1705 seconds