• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 24
  • 24
  • 17
  • 16
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 297
  • 297
  • 52
  • 40
  • 36
  • 32
  • 31
  • 29
  • 29
  • 27
  • 27
  • 26
  • 26
  • 26
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Beyond the Active Site of the Bacterial Rhomboid Protease: Novel Interactions at the Membrane to Modulate Function

Sherratt, Allison R. 19 March 2012 (has links)
Rhomboids are unique membrane proteins that use a serine protease hydrolysis mechanism to cleave a transmembrane substrate within the lipid bilayer. This remarkable proteolytic activity is achieved by a core domain comprised of 6 transmembrane segments that form a hydrophilic cavity submerged in the membrane. In addition to this core domain, many rhomboids also possess aqueous domains of varying sizes at the N- and/or C-terminus, the sequences of which tend to be rhomboid-type specific. The functional role of these extramembranous domains is generally not well understood, although it is thought that they may be involved in regulation of rhomboid activity and specificity. While extramembranous domains may be important for rhomboid activity, they are absent in all x-ray crystal structures available. For this reason, we have focused on uncovering the structural and functional relationship between the rhomboid cytoplasmic domain and its catalytic transmembrane core. To investigate the structure and function of the bacterial rhomboid cytoplasmic domain, full-length rhomboids from Escherichia coli and Pseudomonas aeruginosa were studied using solution nuclear magnetic resonance (NMR) spectroscopy, mutation and activity assays. The P. aeruginosa rhomboid was purified in a range of membrane-mimetic media, evaluated for its functional status in vitro and investigated for its NMR spectroscopic properties. Results from this study suggested that an activity-modulating interaction might occur between the catalytic core transmembrane domain and the cytoplasmic domain. Further investigation of this hypothesis with the E. coli rhomboid revealed that protease activity relies on a short but critical sequence N-terminal to the first transmembrane segment. This sequence was found to have a direct impact on the rhomboid active site, and should be included in future structural studies of this catalytic domain. The structure of the cytoplasmic domain from the E. coli rhomboid was also determined by solution NMR. We found that it forms slowly-exchanging dimers through an exchange of secondary structure elements between subunits, commonly known as three-dimensional domain swapping. Beyond this rare example of domain swapping in a membrane protein extramembranous domain, we found that the rate of exchange between monomeric and dimeric states could be accelerated by transient interactions with large detergent micelles with a phosphocholine headgroup, but not by exposure to other weakly denaturing conditions. This novel example of micelle-catalyzed domain swapping interactions raises the possibility that domain swapping interactions might be induced by similar interactions in vivo. Overall, the results of this thesis have identified detergent conditions that preserve the highest level of activity for bacterial rhomboids, defined the minimal functional unit beyond what had been identified in available x-ray crystal structures, and characterized a novel micelle-catalyzed domain-swapping interaction by the cytoplasmic domain.
92

Characterization of SecA N-Terminus for Membrane Binding and Activity

Floyd, Jeanetta Holley 30 November 2007 (has links)
SecA is an essential component for the translocation of proteins across bacterial membranes. Though SecA is known to function in the membrane the mechanism for this process remains unclear. In this study we identify two specific regions of SecA that may be important for N-terminal membrane interactions. Molecular modeling of SecA from the E. coli and B. subtilus crystal structures, previously determined, revealed that the first 30 amino acids of SecA consists of a helix of amino acids 1-11 connected by a linker (amino acids 12-16) to an amphipathic helix of amino acids 17-30. The first helix is dispensable for SecA activity; however, deletions in the second N-terminal helix, at amino acids 21-25, result in decrease of SecA activity and a deletion of 26 amino acids no longer complements E. coli ts mutant BL21.19. We show that the deletions of N-terminal amino acids that result in the decrease of SecA activity are correlated to the loss of SecA membrane binding and integration in these deletion mutants. In this study we also test the accuracy of a new membrane protein prediction software PSSM_SVM. This program predicted an embedded membrane (EM) region at SecA amino acids 110-118. The predicted sequence represents an unusual prediction for an EM region as most membrane integral regions consist of 15-30 amino acids. Molecular modeling indicated that the region 110-118 is a part of a helix composed of amino acids 107-121 in E. coli SecA, and is indicative of a membrane embedded domain. Site-directed mutagenesis was carried out with several conserved residues, which included L110, L114, and L118 to determine if substitutions at these positions would affect SecA activity. Our data shows that most SecA mutants (including some predicted to be inactive) are active in vivo; however, L110E and L114R mutations rendered the mutated SecA non-functional. All together this study shows that the N-terminal limit of SecA resides at amino acid 26 and that amino acids 21-25 may form a N-terminal membrane binding determinate. Moreover, the predicted EM region may indeed correspond to a functional embedded membrane region for SecA.
93

Beyond the Active Site of the Bacterial Rhomboid Protease: Novel Interactions at the Membrane to Modulate Function

Sherratt, Allison R. 19 March 2012 (has links)
Rhomboids are unique membrane proteins that use a serine protease hydrolysis mechanism to cleave a transmembrane substrate within the lipid bilayer. This remarkable proteolytic activity is achieved by a core domain comprised of 6 transmembrane segments that form a hydrophilic cavity submerged in the membrane. In addition to this core domain, many rhomboids also possess aqueous domains of varying sizes at the N- and/or C-terminus, the sequences of which tend to be rhomboid-type specific. The functional role of these extramembranous domains is generally not well understood, although it is thought that they may be involved in regulation of rhomboid activity and specificity. While extramembranous domains may be important for rhomboid activity, they are absent in all x-ray crystal structures available. For this reason, we have focused on uncovering the structural and functional relationship between the rhomboid cytoplasmic domain and its catalytic transmembrane core. To investigate the structure and function of the bacterial rhomboid cytoplasmic domain, full-length rhomboids from Escherichia coli and Pseudomonas aeruginosa were studied using solution nuclear magnetic resonance (NMR) spectroscopy, mutation and activity assays. The P. aeruginosa rhomboid was purified in a range of membrane-mimetic media, evaluated for its functional status in vitro and investigated for its NMR spectroscopic properties. Results from this study suggested that an activity-modulating interaction might occur between the catalytic core transmembrane domain and the cytoplasmic domain. Further investigation of this hypothesis with the E. coli rhomboid revealed that protease activity relies on a short but critical sequence N-terminal to the first transmembrane segment. This sequence was found to have a direct impact on the rhomboid active site, and should be included in future structural studies of this catalytic domain. The structure of the cytoplasmic domain from the E. coli rhomboid was also determined by solution NMR. We found that it forms slowly-exchanging dimers through an exchange of secondary structure elements between subunits, commonly known as three-dimensional domain swapping. Beyond this rare example of domain swapping in a membrane protein extramembranous domain, we found that the rate of exchange between monomeric and dimeric states could be accelerated by transient interactions with large detergent micelles with a phosphocholine headgroup, but not by exposure to other weakly denaturing conditions. This novel example of micelle-catalyzed domain swapping interactions raises the possibility that domain swapping interactions might be induced by similar interactions in vivo. Overall, the results of this thesis have identified detergent conditions that preserve the highest level of activity for bacterial rhomboids, defined the minimal functional unit beyond what had been identified in available x-ray crystal structures, and characterized a novel micelle-catalyzed domain-swapping interaction by the cytoplasmic domain.
94

Molecular Mechanism of E. coli ATP synthase: Structural Analysis of the Proton Channel

2013 April 1900 (has links)
Adenosine triphosphate (ATP) is the energy currency of all living cells and its production is a key reaction in the energy metabolism of living organisms. Cells produce most of the ATP they require through ATP synthase, a unique molecular rotary motor driven by the movement of protons across the lipid membrane. In E.coli, ATP synthase is composed of a soluble domain called F1, which houses the catalytic sites, and a transmembrane domain called F0 that shuttles protons across the membrane to drive ATP production in the F1 sector. The F0 domain is built of three subunit types: subunit a and a dimer of subunit b form the stator of the motor, while a decameric c ring forms the rotor. The dynamic interface between a and c10 forms the proton channel. The ultimate goal of this work is to determine the structure of the proton transport machinery and understand the molecular mechanism of proton translocation in ATP synthase. We have characterized some of the key events in the stepwise assembly of the F0--complex. We have designed and validated a model protein, consisting of genetically fused subunits a and c, for structural studies. We have made progress towards determining the structure of the proton channel, including the development of a novel procedure for purification of subunit a and the a/c fusion protein, and crystallization of subunit a. Medical applications of this work include the potential development of novel antibiotic compounds, as well as the characterization and potential treatment of three human diseases caused by disruptions in proton transport through F0.
95

Copper at the Interface of Chemistry and Biology: New Insights into hCtr1 Function and the Role of Histidine in Human Cellular Copper Acquisition

Haas, Kathryn Louise January 2010 (has links)
<p>Mechanisms of copper homeostasis are of great interest partly due to their connection to debilitating genetic and neurological disorders. The family of high-affinity copper transporters (Ctr) is responsible for extracellular copper acquisition and internalization in yeast, plants, and mammals, including human. The extracellular domain of the human high-affinity copper transporter (hCtr1) contains essential Cu-binding methionine-rich MXXM and MXM (Mets) motifs that are important for copper acquisition and transport. The hCtr1 extracellular domain also contains potential copper binding histidine (His) clusters, including a high-affinity Cu(II) ATCUN site. As of yet, extracellular His clusters have no established significance for hCtr1 function. We have made model peptides based on the extracellular copper acquisition domain of hCtr1 that is rich in His residues and Mets motifs. The peptides' Cu(I) and Cu(II) binding properties have been characterized by UV-Vis and mass spectrometry. Our findings have been extended to a mouse cell model and we show that His residues are important for hCtr1 function likely because of their contribution to strong copper-binding sites in the hCtr1 extracellular domain responsible for copper acquisition. </p> <p>Copper's pro-oxidant property is also medicinally promising if it can be harnessed to induce oxidative stress as a cancer chemotherapy strategy. Our lab has designed a photocleavable caged copper complex that can selectively release redox-active copper in response to light. The thermodynamic copper binding properties of these potential chemotherapeutics have been characterized</p> / Dissertation
96

Antiserum titer determination and adherence comparison of three major outer membrane proteins TSA56, TSA47 and TSA22 in Orientia tsutsugamushi

Lin, Tung-cheng 07 September 2011 (has links)
Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen. Recent studies show that the complete genome sequence of Orientia tsutsugamushi have been determined. However, the early signaling events involved in the entry of O.tsutsugamushi into mammalian cells remains a challenge. In this study, we demonstrate that adherence ability and comparison of three major outer membrane protein TSA56, TSA47 and TSA22 of O.tsutsugamushi. Through expression and purification of three type-specific antigen 56-kDa (include TSA56-antigen domain I, TSA56-antigen domain III), 47-kDa and 22-kDa of O. tsutsugamushi , antiserum immunoblots from 22 clinical O. tsutsugamushi-infected patients and in vitro adhesion assay of E.coli overexpression outer membrane protein of O. tsutsugamushi , the antiserum titer and adherence ability of bacterial outer membrane proteins are determined. The data show that antiserum titer against three major outer membrane proteins of O. tsutsugamushi was markedly higher in TSA56 compared to TSA47 and TSA22. In adhesion assay, adhesion of host cells by TSA56 was readily than TSA47 and TSA22. Furthermore, adhesion experiment and antiserum titer against antigen-domain I (ADI) region (19-114 aa) in the extracellular domain of TSA56 was also significantly higher than previously reported antigen-domain III(ADIII) region (237-366 aa) which facilitates the invasion of O. tsutsugamushi through interaction with fibronectin .Taken together, these results clearly indicate that O. tsutsugamushi exploits TSA56-mediated bacterial adhesion, abundant antiserum titer and ADI region of TSA56 may draw another adhesion site (except for previously reported ADIII) to invade eukaryotic host cells.
97

Epithelial membrane protein 2 is a potential tumor suppressor in urothelial cell carcinoma

Chen, Yi-Ling 23 August 2012 (has links)
Epidemiologic data suggest that soy consumption may protect against cancer induction in several tissues in humans, including urothelial carcinoma. Genistein have been reported to regulate genes that are involved in several cellular events. However, the molecular mechanism of genistein -induced upregulation of epithelial membrane protein 2 (EMP2), candidate urothelial tumor suppressor, is not entirely understood. At first, we found that the mRNA and protein expression levels of EMP2 were significantly greater in the normal urothelial tissues and human urothelial cells than those in urothelial bladder carcinoma tissues and urothelial cell carcinoma-derived cell lines. Second, EMP2 knockdown via RNA interference markedly enhanced cell proliferation, colony formation, migration and invasiveness. By contrast, EMP2 overexpression suppressed these malignant behaviors. Third, we showed that genistein-induced inhibition in cell proliferation is associated with an increase in EMP2 expression. Using various deleted EMP2 promoter constructs, we defined that the EMP2 core promoter is enough to observe the genistein-induced upregulation of EMP2 transcriptional activity. Using site direct mutagenesis and chromatin immunoprecipitation assays demonstrated that cyclic-AMP response element binding protein 1 (CREB1) acts as a positive regulator of EMP2 transcription by directly binding to its promoter. These results showed EMP2 suppressed urothelial cell carcinoma-derived cell growth, motility and invasion and for the first time that genistein promoted EMP2 expression in urothelial cell carcinoma-derived cells by inducing EMP2 transcriptional activity via CREB1 binding.
98

The role of protein-membrane interactions in modulation of signaling by bacterial chemoreceptors

Draheim, Roger Russell 15 May 2009 (has links)
Environmental signals are sensed by membrane-spanning receptors that communicate with the cell interior. Bacterial chemoreceptors modulate the activity of the CheA kinase in response to binding of small ligands or upon interaction with substrate-bound periplasmic-binding proteins. The mechanism of signal transduction across the membrane is a displacement of the second transmembrane domain (TM2) a few angstroms toward the cytoplasm. This movement repositions a dynamic transmembrane helix relative to the plane of the cell membrane. The research presented in this dissertation investigated the contribution of TM2-membrane interactions to signaling by the aspartate chemoreceptor (Tar) of Escherichia coli. Aromatic residues that reside at the cytoplasmic polar-hydrophobic membrane interface (Trp-209 and Tyr-210) were found to play a significant role in regulating signaling by Tar. These interactions were subsequently manipulated to modulate the signaling properties of Tar. The baseline signaling state was shown to be incrementally altered by repositioning the Trp-209/Tyr-210 pair. To our knowledge, this is the first example of harnessing membrane-protein interactions to modulate the signal output of a transmembrane receptor in a controlled and predictable manner. Potential long-term applications include the use of analogous mutations to elucidate two-component signaling pathways, to engineer the signaling parameters of biosensors that incorporate chemoreceptors, and to predict the movement of dynamic transmembrane helices in silico.
99

Trafficking of integral membrane proteins of the inner nuclear membrane can be mediated by the ''sorting motif'' of autographa californica nucleopolyhedrovirus odv-e66

Williamson, Shawn T 30 October 2006 (has links)
The amino-terminal 33 amino acids of the baculovirus integral membrane protein, ODV-E66, are sufficient for localization of fusion proteins to viralinduced intranuclear microvesicles (MV) and occlusion derived virus envelopes during infection, and has been termed the sorting motif (SM). When abundantly expressed, SM-fusions are also detected in the inner nuclear membrane (INM), outer nuclear membrane and endoplasmic reticulum of infected cells, suggesting proteins with the SM use the same trafficking pathway as cellular INM proteins to traffic to nuclear membranes. This study identifies the essential characteristics required for sorting of the SM to the INM of uninfected cells, and the MV and ODV envelopes of infected cells. These features are an 18 amino acid transmembrane sequence that lacks polar and charged amino acids (a.a.) with a cluster of charged a.a. spaced 5-11 residues from the end of the transmembrane sequence. A comparison of the a.a. sequence of these SM features with cellular INM proteins shows the features are conserved. The model of INM protein sorting and localization predicts the only known sorting event during INM protein trafficking is immobilization/retention in the INM. This study uses confocal microscopy and fluorescence recovery after photobleaching to compare the localization and mobility of lamin B receptor (LBR) fusions (which contain SM-like sequences) to a viral SM fusion when expressed in either mammalian or insect cells. The results show that immobilization is not necessarily required for accumulation of proteins in the INM. Furthermore, the results from infected cells show that an active sorting event, likely independent of immobilization, can distinguish the viral SM from cellular sequences similar to the SM. The results of this study show that sorting of proteins to the INM can be mediated by the viral SM or INM protein SM-like sequences that can function either independent of, or in addition to, immobilization. These data combined with recent reports suggest that in addition to diffusion:retention a signal mediated mechanism for sorting and localization to the INM can occur.
100

The dimerization of Staphylococcus aureus sortase A on cell membrane

Zhu, Jie, 1980- 08 August 2012 (has links)
Staphylococcus aureus sortase A (SrtA) transpeptidase is a prominent membrane bound virulence factor in gram-positive bacteria, which organizes the peptidoglycan cell wall of the organism. Here, we report the first direct observation of the self-association behavior of SrtA. Formation of a SrtA dimer is highly selective in vitro in E. coli and in vivo on the S. aureus cell membrane. Quantitative analysis of protein binding affinity indicated a moderate association between two SrtA molecules with an apparent K[subscript d] of about 55 [micrometres] in vitro. Furthermore, to address the importance of dimerization for enzyme function, site-directed mutagenesis on potential target residues was performed to generate monomer only SrtA mutant proteins to completely disrupt dimer formation both in vitro and in vivo. Finally, an in vivo activity assay was performed to evaluate the function of SrtA wild type protein as well as its monomer only mutants. Our data demonstrated that S. aureus cells expressing mutant SrtA in a monomer only form are more successful at invading human epithelial cells than those expressing wild type SrtA in dimer-monomer equilibrium. It suggested that the monomeric form of SrtA is more active than the dimeric enzyme. We also demonstrated the uniqueness of SrtA dimerization by identifying that at least one other sortase family protein, SrtB only exists in monomer form. SrtA dimerization may have significant implications for understanding its biological function at both the cellular and molecular levels, which will lead to the development of new anti-infective therapies against gram-positive pathogens. / text

Page generated in 0.0695 seconds