• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Correlação estrutura-função da proteína ligante de ácidos graxos de cérebro humano (B-FABP) / Structure-function correlation in the Fatty Acid Binding Protein from Human Brain (B-FABP)

Silva, Daniel Ferreira 22 November 2010 (has links)
Ácidos graxos são moléculas hidrofóbicas essenciais para a composição da estrutura física celular, para o metabolismo energético dos seres vivos e também para os caminhos de sinalização molecular no proteoma celular. No caso de deficiência no ácido graxo docosahexaenóico (DHA) e do ácido eicosapentaenoico (EPA) temos a depressão e a mudança do comportamento. O transporte destas moléculas hidrofóbicas no citosol celular é realizado por uma família de proteínas capazes de se ligar a esses ácidos graxos de maneira seletiva, com alta afinidade e de forma reversível. Esta família de proteína é conhecida como FABP, ou proteínas ligantes de ácido graxo. Para realizar esta função, as FABP possuem características únicas tanto na sua estrutura tridimensional quanto na dinâmica experimentada pelos vários elementos estruturais. Diversos trabalhos identificaram regiões relevantes e, com mutações realizadas em resíduos específicos, caracterizaram o mecanismo como a proteína interage com ligantes e com a bicamada lipídica para a realização da sua função, identificando um processo multi-estágio na interação com a bicamada lipídica. Contudo, a não realização de mutações em todos os resíduos da proteína pode deixar não-identificados regiões ou resíduos da proteína também envolvidos na sua função. Além disso, nunca foi caracterizado o que ocorre com os resíduos e com a estrutura da FABP quando a proteína está complexada com uma bicamada lipídica. No presente trabalho, escolhemos a B-FABP para estudar a interação com ligantes e o complexo proteína-membrana desta família de proteínas. Para isto, as técnicas de ressonância magnética nuclear 15N-HSQC e eletrônica (RMN e RPE) foram utilizadas para acompanhar mudanças estruturais e dinâmicas ocorridas quanto de interações moleculares. Com a técnica de RPE e o uso de derivados de ácidos graxos marcados com radicais nitróxidos, monitoramos o sítio de ligação da molécula de ácido graxo e suas alterações quando na presença do surfactante SDS. No caso de RMN, foi usada em proteínas marcadas isotopicamente com 15N na presença de bicelas isotrópicas de DMPC: DHPC na razão igual a um (q = 1), em uma concentração lipídica (CL) de 4%. Nossos resultados além de identificar os mesmos resíduos já conhecidos na interação da FABP com modelos de membrana, também encontrou novos resíduos nunca antes associados à superfície de contato da FABP com a bicamada lipídica. / Fatty acids are hydrophobic molecules essential to the cell structure, to the energetic metabolism of living organisms and to the molecular signaling pathways in the cell proteome. Depression and behavior alteations are two common consequences of deficiencies in docosahexanoic (DHA) and eicosapentaenoic (EPA) acids. The transport of such hydrophobic molecules in the cytosol is the main function of a family of proteins capable of making a selective, high affinity, and reversible binding of fatty acids. This family of proteins is known as FABPs (fatty acid binding proteins). To perform their function, FABPs have unique features in both their tridimensional structure and in the dynamics experienced by the several structural elements. Many reports have identified regions that are relevant to function and, through point mutations of specific residues, have characterized the mechanism used by the protein to bind its ligand and also to interact with lipid bilayers. However, the point mutation strategy relies heavily on the choice of residues such that missing residues can lead to the lack of identification of important elements involved in protein function. Moreover, the characterization of the protein-bilayer complex still deserves a more detailed investigation. In this work, we study the B-FABP protein in terms of its interaction with ligands as well as a membrane model system. We made use of magnetic resonance techniques, nuclear (NMR) and electronic (EPR), to probe structural and dynamical changes occurring upon intermolecular interaction. EPR and spin labeled fatty acids allowed us to monitor the ligand binding site in the protein structure and also its alterations in the presence of the surfactant SDS. NMR HSQC was used to gain information on the conformational changes of isotopically labeled protein in the presence of biceles made of DMPC:DHPC (q = 1 and lipid concentration CL of 4%). Our results confirmed relevant functional residues that had been previously identified and also pointed to new residues that had not been implicated as part of the contact surface before, thus widening our understanding of FABP-bilayer interaction.
2

Methods for Detection of Small Molecule-Protein Interactions

January 2015 (has links)
abstract: Detection of molecular interactions is critical for understanding many biological processes, for detecting disease biomarkers, and for screening drug candidates. Fluorescence-based approach can be problematic, especially when applied to the detection of small molecules. Various label-free techniques, such as surface plasmon resonance technique are sensitive to mass, making it extremely challenging to detect small molecules. In this thesis, novel detection methods for molecular interactions are described. First, a simple detection paradigm based on reflectance interferometry is developed. This method is simple, low cost and can be easily applied for protein array detection. Second, a label-free charge sensitive optical detection (CSOD) technique is developed for detecting of both large and small molecules. The technique is based on that most molecules relevant to biomedical research and applications are charged or partially charged. An optical fiber is dipped into the well of a microplate. It detects the surface charge of the fiber, which does not decrease with the size (mass) of the molecule, making it particularly attractive for studying small molecules. Third, a method for mechanically amplification detection of molecular interactions (MADMI) is developed. It provides quantitative analysis of small molecules interaction with membrane proteins in intact cells. The interactions are monitored by detecting a mechanical deformation in the membrane induced by the molecular interactions. With this novel method small molecules and membrane proteins interaction in the intact cells can be detected. This new paradigm provides mechanical amplification of small interaction signals, allowing us to measure the binding kinetics of both large and small molecules with membrane proteins, and to analyze heterogeneous nature of the binding kinetics between different cells, and different regions of a single cell. Last, by tracking the cell membrane edge deformation, binding caused downstream event – granule secretory has been measured. This method focuses on the plasma membrane change when granules fuse with the cell. The fusion of granules increases the plasma membrane area and thus the cell edge expands. The expansion is localized at the vesicle release location. Granule size was calculated based on measured edge expansion. The membrane deformation due to the granule release is real-time monitored by this method. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
3

Correlação estrutura-função da proteína ligante de ácidos graxos de cérebro humano (B-FABP) / Structure-function correlation in the Fatty Acid Binding Protein from Human Brain (B-FABP)

Daniel Ferreira Silva 22 November 2010 (has links)
Ácidos graxos são moléculas hidrofóbicas essenciais para a composição da estrutura física celular, para o metabolismo energético dos seres vivos e também para os caminhos de sinalização molecular no proteoma celular. No caso de deficiência no ácido graxo docosahexaenóico (DHA) e do ácido eicosapentaenoico (EPA) temos a depressão e a mudança do comportamento. O transporte destas moléculas hidrofóbicas no citosol celular é realizado por uma família de proteínas capazes de se ligar a esses ácidos graxos de maneira seletiva, com alta afinidade e de forma reversível. Esta família de proteína é conhecida como FABP, ou proteínas ligantes de ácido graxo. Para realizar esta função, as FABP possuem características únicas tanto na sua estrutura tridimensional quanto na dinâmica experimentada pelos vários elementos estruturais. Diversos trabalhos identificaram regiões relevantes e, com mutações realizadas em resíduos específicos, caracterizaram o mecanismo como a proteína interage com ligantes e com a bicamada lipídica para a realização da sua função, identificando um processo multi-estágio na interação com a bicamada lipídica. Contudo, a não realização de mutações em todos os resíduos da proteína pode deixar não-identificados regiões ou resíduos da proteína também envolvidos na sua função. Além disso, nunca foi caracterizado o que ocorre com os resíduos e com a estrutura da FABP quando a proteína está complexada com uma bicamada lipídica. No presente trabalho, escolhemos a B-FABP para estudar a interação com ligantes e o complexo proteína-membrana desta família de proteínas. Para isto, as técnicas de ressonância magnética nuclear 15N-HSQC e eletrônica (RMN e RPE) foram utilizadas para acompanhar mudanças estruturais e dinâmicas ocorridas quanto de interações moleculares. Com a técnica de RPE e o uso de derivados de ácidos graxos marcados com radicais nitróxidos, monitoramos o sítio de ligação da molécula de ácido graxo e suas alterações quando na presença do surfactante SDS. No caso de RMN, foi usada em proteínas marcadas isotopicamente com 15N na presença de bicelas isotrópicas de DMPC: DHPC na razão igual a um (q = 1), em uma concentração lipídica (CL) de 4%. Nossos resultados além de identificar os mesmos resíduos já conhecidos na interação da FABP com modelos de membrana, também encontrou novos resíduos nunca antes associados à superfície de contato da FABP com a bicamada lipídica. / Fatty acids are hydrophobic molecules essential to the cell structure, to the energetic metabolism of living organisms and to the molecular signaling pathways in the cell proteome. Depression and behavior alteations are two common consequences of deficiencies in docosahexanoic (DHA) and eicosapentaenoic (EPA) acids. The transport of such hydrophobic molecules in the cytosol is the main function of a family of proteins capable of making a selective, high affinity, and reversible binding of fatty acids. This family of proteins is known as FABPs (fatty acid binding proteins). To perform their function, FABPs have unique features in both their tridimensional structure and in the dynamics experienced by the several structural elements. Many reports have identified regions that are relevant to function and, through point mutations of specific residues, have characterized the mechanism used by the protein to bind its ligand and also to interact with lipid bilayers. However, the point mutation strategy relies heavily on the choice of residues such that missing residues can lead to the lack of identification of important elements involved in protein function. Moreover, the characterization of the protein-bilayer complex still deserves a more detailed investigation. In this work, we study the B-FABP protein in terms of its interaction with ligands as well as a membrane model system. We made use of magnetic resonance techniques, nuclear (NMR) and electronic (EPR), to probe structural and dynamical changes occurring upon intermolecular interaction. EPR and spin labeled fatty acids allowed us to monitor the ligand binding site in the protein structure and also its alterations in the presence of the surfactant SDS. NMR HSQC was used to gain information on the conformational changes of isotopically labeled protein in the presence of biceles made of DMPC:DHPC (q = 1 and lipid concentration CL of 4%). Our results confirmed relevant functional residues that had been previously identified and also pointed to new residues that had not been implicated as part of the contact surface before, thus widening our understanding of FABP-bilayer interaction.
4

HIV-1 Nef destabilisiert artifizielle Membransysteme: Untersuchung der Bedeutung des Myristoylankers und des positiven Ladungsclusters / HIV-1 Nef perturbs artificial membranes: investigation of the contribution of the myristoyl anchor and of the basic amino acid cluster

Szilluweit, Ruth 28 April 2009 (has links)
No description available.

Page generated in 0.1131 seconds