• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

System Identification in Automatic Database Memory Tuning

Burrell, Tiffany 25 March 2010 (has links)
Databases are very complex systems that require database system administrators to perform system tuning in order to achieve optimal performance. Memory tuning is vital to the performance of a database system because when the database workload exceeds its memory capacity, the results of the queries running on a system are delayed and can cause substantial user dissatisfaction. In order to solve this problem, this thesis presents a platform modeled after a closed control feedback loop to control the level of multi-query processing. Utilizing this platform provides two key assets. First, the system identification is acquired, which is one of two crucial steps involved in developing a closed feedback loop. Second, the platform provides a means to experimentally study database tuning problem and verify the effectiveness of research ideas related to database performance.
2

Abortable and Query-abortable Types and Their Efficient Implementation

Horn, Stephanie Lorraine 24 September 2009 (has links)
We introduce abortable and query-abortable object types intended for implementation in asynchronous shared-memory systems with low contention. Implementations of such types behave like ordinary objects when accessed sequentially, but may abort operations when accessed concurrently. An aborted operation may or may not take effect, i.e., cause a state transition, and it returns no indication of which possibility occurred. Since this uncertainty can be problematic, a query-abortable type supports a QUERY operation that each process can use to determine its last non-QUERY operation on the object that caused a state transition, and the response associated with this state transition. Our research is closely related to obstruction-free implementations (introduced by Herlihy, Luchangco and Moir) and responsive obstruction-free implementations (introduced by Attiya, Guerraoui and Kouznetsov). Like abortable and query-abortable types, these implementations may exhibit degraded behaviour in the face of contention. We show that abortable registers--registers strictly weaker than safe registers--can be used to obtain obstruction-free and responsive obstruction-free implementations for any type. We present universal constructions for abortable and query-abortable types that are novel and efficient in the number of registers used. Specifically, they are based on a simple timestamping mechanism for detecting concurrent executions, and, in systems with n processes, use only n abortable registers or only O(n^2) single-reader, single-writer abortable registers. The timestamping mechanism we introduce is based on the inc&read counter type and appears to be interesting in its own right. As a generalization, we study the k-inc&read counter types, for k>0. We also identify a potential problem with correctness properties based on step contention: with such properties, the composition of correct object implementations may result in an implementation that is not correct. In other words, implementations defined in terms of step contention are not always composable. To avoid this problem, we introduce a property based on interval contention, namely non-triviality, to define the correct behaviour of abortable and query-abortable object implementations.
3

Abortable and Query-abortable Types and Their Efficient Implementation

Horn, Stephanie Lorraine 24 September 2009 (has links)
We introduce abortable and query-abortable object types intended for implementation in asynchronous shared-memory systems with low contention. Implementations of such types behave like ordinary objects when accessed sequentially, but may abort operations when accessed concurrently. An aborted operation may or may not take effect, i.e., cause a state transition, and it returns no indication of which possibility occurred. Since this uncertainty can be problematic, a query-abortable type supports a QUERY operation that each process can use to determine its last non-QUERY operation on the object that caused a state transition, and the response associated with this state transition. Our research is closely related to obstruction-free implementations (introduced by Herlihy, Luchangco and Moir) and responsive obstruction-free implementations (introduced by Attiya, Guerraoui and Kouznetsov). Like abortable and query-abortable types, these implementations may exhibit degraded behaviour in the face of contention. We show that abortable registers--registers strictly weaker than safe registers--can be used to obtain obstruction-free and responsive obstruction-free implementations for any type. We present universal constructions for abortable and query-abortable types that are novel and efficient in the number of registers used. Specifically, they are based on a simple timestamping mechanism for detecting concurrent executions, and, in systems with n processes, use only n abortable registers or only O(n^2) single-reader, single-writer abortable registers. The timestamping mechanism we introduce is based on the inc&read counter type and appears to be interesting in its own right. As a generalization, we study the k-inc&read counter types, for k>0. We also identify a potential problem with correctness properties based on step contention: with such properties, the composition of correct object implementations may result in an implementation that is not correct. In other words, implementations defined in terms of step contention are not always composable. To avoid this problem, we introduce a property based on interval contention, namely non-triviality, to define the correct behaviour of abortable and query-abortable object implementations.
4

Sécurité temps réel dans les systèmes embarqués critiques / Real-time security in critical embedded system

Buret, Pierrick 01 December 2015 (has links)
La croissance des flux d'information à travers le monde est responsable d'une importante utilisation de systèmes embarqués temps-réel, et ce notoirement dans le domaine des satellites. La présence de ces systèmes est devenue indispensable pour la géolocalisation, la météorologie, ou les communications. La forte augmentation du volume de ces matériels, impactée par l'afflux de demande, est à l'origine de l'accroissement de la complexité de ces derniers. Grâce à l'évolution du matériel terrestre, le domaine aérospatial se tourne vers de nouvelles technologies telles que les caches, les multi-coeurs, et les hyperviseurs. L'intégration de ces nouvelles technologies est en adéquation avec de nouveaux défis techniques. La nécessité d'améliorer les performances de ces systèmes induit le besoin de réduction du coût de fabrication et la diminution du temps de production. Les solutions technologiques qui en découlent apportent pour majeure partie des avantages en matière de diminution du nombre global de satellites à besoin constant. La densité d'information traitée est parallèlement accrue par l'augmentation du nombre d'exploitants pour chaque satellite. En effet, plusieurs clients peuvent se voir octroyer tout ou partie d'un même satellite. Intégrer les produits de plusieurs clients sur une même plateforme embarquée la rend vulnérable. Augmenter la complexité du système rend dès lors possible un certain nombre d'actes malveillants. Cette problématique autrefois à l'état d'hypothèse devient aujourd'hui un sujet majeur dans le domaine de l'aérospatial. Figure dans ce document, en premier travail d'exploration, une présentation des actes malveillants sur système embarqué, et en particulier ceux réalisés sur système satellitaire. Une fois le risque exposé, je développe la problématique temps-réel. Je m'intéresse dans cette thèse plus précisément à la sécurité des hyperviseurs spatiaux. Je développe en particulier deux axes de recherche. Le premier porte sur l'évolution des techniques de production et la mise en place d'un système de contrôle des caractéristiques temporelles d'un satellite. Le deuxième axe améliore les connaissances techniques sur un satellite en cours de fonctionnement et permet une prise de décision en cas d'acte malveillant. Je propose plus particulièrement une solution physique permettant de déceler une anomalie sur la gestion des mémoires internes au satellite. En effet, la mémoire est un composant essentiel du fonctionnement du système, et ses propriétés communes entre tous les clients la rend particulièrement vulnérable. De plus, connaître le nombre d'accès en mémoire permet un meilleur ordonnancement et une meilleure prédiction d'un système temps réel. Notre composant permet la détection et l'interprétation d'une potentielle attaque ou d'un problème de sûreté de fonctionnement. Cette thèse met en évidence la complémentarité des deux travaux proposés. En effet, la mesure du nombre d'accès en mémoire peut se mesurer via un algorithme génétique dont la forme est équivalente au programme cherchant le pire temps d'exécution. Il est finalement possible d'étendre nos travaux de la première partie vers la seconde. / Satellites are real-time embedded systems and will be used more and more in the world. Become essential for the geo-location, meteorology or communications across the planet, these systems are increasingly in demand. Due to the influx of requests, the designers of these products are designing a more and more complex hardware and software part. Thanks to the evolution of terrestrial equipment, the aero-space field is turning to new technologies such as caches, multi-core, and hypervisor. The integration of these new technologies bring new technical challenges. In effect, it is necessary to improve the performance of these systems by reducing the cost of manufacturing and the production time. One of the major advantages of these technologies is the possibility of reducing the overall number of satellites in space while increasing the number of operators. Multiple clients softwares may be together today in a same satellite. The ability to integrate multiple customers on the same satellite, with the increasing complexity of the system, makes a number of malicious acts possible. These acts were once considered as hypothetical. Become a priority today, the study of the vulnerability of such systems become major. In this paper, we present first work a quick exploration of the field of malicious acts on onboard system and more specifically those carried out on satellite system. Once the risk presentation we will develop some particular points, such as the problematic real-time. In this thesis we are particularly interested in the security of space hypervisors. We will develop precisely 2 lines of research. The first axis is focused on the development of production technics and implementing a control system of a satellite temporal characteristics. The objective is to adapt an existing system to the constraints of the new highly complex systems. We confront the difficulty of measuring the temporal characteristics running on a satellite system. For this we use an optimization method called dynamic analysis and genetic algorithm. Based on trends, it can automatically search for the worst execution time of a given function. The second axis improves the technical knowledge on a satellite in operation and enables decision making in case of malicious act. We propose specifically a physical solution to detect anomalies in the management of internal memory to the satellite. Indeed, memory is an essential component of system operation, and these common properties between all clients makes them particularly vulnerable to malicious acts. Also, know the number of memory access enables better scheduling and better predictability of a real time system. Our component allows the detection and interpretation of a potential attack or dependability problem. The work put in evidence the complementarity of the two proposed work. Indeed, the measure of the number of memory access that can be measured via a genetic algorithm whose shape is similar to the program seeking the worst execution time. So we can expand our work of the first part with the second.

Page generated in 0.1124 seconds