Spelling suggestions: "subject:"mercado dde curto prazo"" "subject:"mercado dee curto prazo""
1 |
Previsão multi-passos a frente do preço de energia elétrica de curto prazo no mercado brasileiroRESTON FILHO, José Carlos 28 November 2014 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2015-05-26T22:37:44Z
No. of bitstreams: 2
license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5)
Tese_PrevisaoMultipassosFrente.pdf: 3784960 bytes, checksum: c62afd633577011ef91bb1e983a19efe (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2015-06-16T17:02:30Z (GMT) No. of bitstreams: 2
license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5)
Tese_PrevisaoMultipassosFrente.pdf: 3784960 bytes, checksum: c62afd633577011ef91bb1e983a19efe (MD5) / Made available in DSpace on 2015-06-16T17:02:30Z (GMT). No. of bitstreams: 2
license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5)
Tese_PrevisaoMultipassosFrente.pdf: 3784960 bytes, checksum: c62afd633577011ef91bb1e983a19efe (MD5)
Previous issue date: 2014 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / A predição do preço da energia elétrica é uma questão importante para todos os participantes do mercado, para que decidam as estratégias mais adequadas e estabeleçam os contratos bilaterais que maximizem seus lucros e minimizem os seus riscos. O preço da energia tipicamente exibe sazonalidade, alta volatilidade e picos. Além disso, o preço da energia é influenciado por muitos fatores, tais como: demanda de energia, clima e preço de combustíveis. Este trabalho propõe uma nova
abordagem híbrida para a predição de preços de energia no mercado de curto prazo. Tal abordagem combina os filtros autorregressivos integrados de médias móveis (ARIMA) e modelos de Redes Neurais (RNA) numa estrutura em cascata e utiliza variáveis explanatórias. Um processo em dois passos é aplicado. Na primeira etapa, as variáveis explanatórias são preditas. Na segunda etapa, os preços de
energia são preditos usando os valores futuros das variáveis exploratórias. O modelo proposto considera uma predição de 12 passos (semanas) a frente e é
aplicada ao mercado brasileiro, que possui características únicas de comportamento
e adota o despacho centralizado baseado em custo. Os resultados mostram uma
boa capacidade de predição de picos de preço e uma exatidão satisfatória de acordo
com as medidas de erro e testes de perda de cauda quando comparado com
técnicas tradicionais. Em caráter complementar, é proposto um modelo classificador
composto de árvores de decisão e RNA, com objetivo de explicitar as regras de
formação de preços e, em conjunto com o modelo preditor, atuar como uma
ferramenta atrativa para mitigar os riscos da comercialização de energia. / Electricity price forecasting is an important issue to all Market participants in
order to decide bidding strategies and to establish bilateral contracts,
maximizing their profits and minimizing their risks. Energy price typically
exhibits seasonality, high volatility and spikes. Also, energy price is influenced
by many factors such as power demand, weather, and fuel price. This work
proposes a new hybrid approach for short-term energy price prediction. This
approach combines auto-regressive integrated moving average (ARIMA) and
neural network (ANN) models in a cascaded structure and uses explanatory
variables. A two step procedure is applied. In the first step, the selected
explanatory variables are predicted. In the second one, the energy prices are
forecasted by using the explanatory variables prediction. The proposed model
considers a multi-step ahead price prediction (12 weeks-ahead) and is applied
to Brazilian market, which adopts a cost-based centralized dispatch with unique
characteristics of price behavior. The results show good ability to predict
spikes and satisfactory accuracy according to error measures and tail loss test
when compared with traditional techniques. Additionally, is proposed a classifier
model consisting of ANN and decision trees in order to explain the rules of price
formation and, together with the predictor model, acting as an attractive tool to
mitigate the risks of energy trading.
|
2 |
Uma abordagem computacional para previsão de demanda de energia elétrica e apoio à tomada de decisão no mercado de curto prazo no Brasil / A computational approach to forecasting demand for electricity and supporting short-term market decision making in BrazilBezerra, Francisco Elânio 02 February 2017 (has links)
Submitted by Nadir Basilio (nadirsb@uninove.br) on 2017-04-27T18:03:46Z
No. of bitstreams: 1
Francisco Elanio Bezerra.pdf: 3173273 bytes, checksum: d46cdeb01bbd348e3926275e79daa4f3 (MD5) / Made available in DSpace on 2017-04-27T18:03:46Z (GMT). No. of bitstreams: 1
Francisco Elanio Bezerra.pdf: 3173273 bytes, checksum: d46cdeb01bbd348e3926275e79daa4f3 (MD5)
Previous issue date: 2017-02-02 / The technological advance, in the world, has brought about profound changes in the way the electric energy is generated, distributed and consumed. The increase in electricity consumption and the interruption of power supply in Brazil led to the creation of Decree 5.163/2004, proposing a new model for the sale of electricity in the National Interconnected System through auctions in the free contracting environments between buyers and Sellers, or regulated through auctions promoted by the Electric Energy Trading Chamber (CCEE), which accounts for the difference between contracting and energy consumption and through the settlement price of the differences and promotes the settlement of this energy short-term market .If you have more contracts than consumption, or more consumption than contracts, you will suffer penalties. With the change in the commercialization of energy, the generators and distributors suffer with forecast of consumption and with amount of energy that must contract in the auctions. In this scenario, several techniques such as genetic algorithm, multicriteria decision, fuzzy logic, artificial neural networks among others have been used to optimize the system of buying and selling energy in this new environment. Therefore, the proposal of this work is to develop an intelligent computational system, using historical data from a distributor to forecast demand by consumption class to support decision making in the short term market. The result of the work may provide conditions for a distributor to monitor energy demand by consumption class, provide possibilities for short-term market trading and minimize losses with subcontracting and over-contracting. / O avanço tecnológico, no mundo, trouxe profundas mudanças na forma como a energia elétrica é gerada, distribuída e consumida. O aumento do consumo de energia elétrica e a interrupção no fornecimento de energia no Brasil levaram à criação do Decreto 5.163/2004, propondo um novo modelo de comercialização de energia elétrica no Sistema Interligado Nacional por meio de leilões nos ambientes de contratação livre entre compradores e vendedores, ou regulada, por meio de leilões promovidos pela Câmara de Comercialização de Energia Elétrica (CCEE). A diferença entre contratação e consumo é contabilizada pela CCEE mensalmente e negociada no mercado de curto prazo. Por meio do preço de liquidação das diferenças é promovida a liquidação dessa energia, cujo mecanismo pode gerar prejuízos ou lucros para a distribuidora que, caso tenha mais contratos do que consumo, ou mais consumo do que contratos, sofrerá penalizações. Com a modificação na comercialização de energia, os geradores e distribuidores sofrem com previsão de consumo e com montante de energia que devem contratar nos leilões. Neste cenário, diversas técnicas, como algoritmo genético, decisão multicritério, lógica fuzzy, redes neurais artificiais entre outras vêm sendo utilizadas para otimizar o sistema de compra e venda que atenda o decreto e mantenha as receitas da geradora e distribuidora. Sendo assim, a proposta deste trabalho é desenvolver uma abordagem computacional utilizando dados históricos de uma distribuidora para previsão de demanda por classe de consumo que sirva de apoio à tomada de decisão no mercado de curto prazo. O resultado do trabalho poderá oferecer condições para uma distribuidora acompanhar a demanda de energia por classe de consumo, fornecer possibilidades para negociação no mercado de curto prazo e minimizar prejuízos com subcontratação e sobrecontratação.
|
3 |
Redes neurais diretas e recorrentes na previsão do preço de energia elétrica de curto prazo no mercado brasileiroPEREIRA JUNIOR, Flaviano Ramos 11 November 2016 (has links)
Submitted by camilla martins (camillasmmartins@gmail.com) on 2017-04-27T13:23:33Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_RedesNeuraisDiretas.pdf: 1815165 bytes, checksum: cfcfafe8a5e2953a3752c0fa6b44406d (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-05-04T12:40:06Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_RedesNeuraisDiretas.pdf: 1815165 bytes, checksum: cfcfafe8a5e2953a3752c0fa6b44406d (MD5) / Made available in DSpace on 2017-05-04T12:40:06Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_RedesNeuraisDiretas.pdf: 1815165 bytes, checksum: cfcfafe8a5e2953a3752c0fa6b44406d (MD5)
Previous issue date: 2016-11-11 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nos estudos sobre o mercado de energia do brasil existem poucos trabalhos sobre predição do preço de energia elétrica em curto prazo. Os que existem utilizam modelos preditores do tipo ARIMA e rede neural direta, entretanto com a rede neural sem método de seleção das variáveis de entrada ou dos atrasos das entradas. Além disso, não há trabalhos que utilizem redes neurais recorrentes no mercado brasileiro. O mercado de energia de curto prazo pode apresentar importantes oportunidades aos agentes atuantes, pois a comercialização nesse mercado é menos burocrática em relação ao mercado de longo prazo. Este trabalho apresenta o uso de redes neurais diretas e recorrentes (além da comparação com o modelo ARIMA) para a previsão do preço de energia elétrica de curto prazo brasileiro com uso da técnica de correlação para seleção das variáveis externas da rede e também para escolha dos atrasos nestas variáveis selecionadas. Mostra-se que, na
previsão de um passo a frente, as redes neurais implementadas superam o desempenho do modelo ARIMA para esta série e, em geral, a rede direta apresenta melhor resultado que a recorrente. além disso, a seleção dos atrasos nas variáveis de entrada melhora o desempenho da rede neural direta. / There are few articles about short term electricity price prediction in the Brazilian market. Existing works use ARIMA predictors and feedforward neural networks however, without input selection or lag selection for these inputs. Besides, there is no work with use of recurrent neural networks in the Brazilian electricity market. The short term electricity market may show important opportunities for the agents acting as the commercialization in this market is less bureaucratic in relation to the long-term market.. This article shows the use of feedforward and recurrent neural networks (besides comparison with the ARIMA model) to predict short term electricity price with the use of correlation for exogenous input selection for the networks and also for lag selection to these inputs. It is shown that, for one step forward predictions, both implemented networks outperforms the ARIMA model, and in general, feedforward network works better than recurrent network. Besides, lag selection in the input improves feedforward network performance.
|
Page generated in 0.2122 seconds