• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sources and Biogeochemical Transformation of Mercury in Aquatic Ecosystems

Deonarine, Amrika January 2011 (has links)
<p>Mercury contamination in aquatic ecosystems is a concern as anaerobic aquatic sediments are the primary regions of methylmercury production in freshwater and coastal regions. Methlymercury is a bioaccumulative neurotoxin, and human exposure to methylmercury can result in impaired functioning of the central nervous system and developmental disabilities in children. To minimize the risk of human exposure to methylmercury, it is important to be knowledgeable of the various sources which can supply mercury to aquatic ecosystems as well as have a complete understanding of the biogeochemical processes which are involved in methylmercury production in aquatic systems. In this dissertation work, both mercury biogeochemical speciation in anaerobic aquatic sediments and sources of mercury to aquatic systems were addressed. </p><p>The biogeochemical speciation of mercury is a critical factor which influences the fate and transformation of mercury in aquatic environments. In anaerobic sediments, mercury chemical speciation is controlled by reduced sulfur groups, such as inorganic sulfide and reduced sulfur moieties in dissolved organic matter (DOM). The formation of mercury sulfide nanoparticles through stabilization by dissolved organic matter (DOM) was investigated in precipitation studies using dynamic light scattering. Mercury sulfide nanoparticles (particle diameter < 100 nm) were stabilized through precipitation reactions that were kinetically hindered by DOM. To further investigate the interaction between DOM and metal sulfides, similar precipitation studies were performed using zinc sulfide and a number of DOM isolates (humic and fulvic acids) representing a range of DOM properties. The results of these experiments suggest that the mechanism of metal sulfide particle stabilization may be electrostatic or electrosteric, depending on the nature of the DOM molecule.</p><p>The mercury that is methylated in aquatic systems enters these environments via a number of sources, including atmospheric deposition, landscape runoff and other industrial and municipal activities. In two separate field studies, two potential sources of mercury to aquatic systems were investigated: landscape runoff and coal combustion products. The mercury loading to aquatic environments from these sources and their potential for transformation to methylmercury were investigated.</p><p>Landscape runoff from a Duke University campus catchment (Durham, NC) was identified as a source of mercury to a stream-wetland. The source of mercury to the runoff was likely from a `legacy' source of mercury; the historic application of mercury fungicide compounds to turf grass during the 20th century. Downstream of the point where the runoff was discharged to the stream-wetland, methylmercury concentrations were detected in stream sediments (up to 11% of total mercury), suggesting that this legacy mercury could be transformed to methylmercury. </p><p>The environmental impact of coal combustion products (CCPs) with respect to mercury and methylmercury was also investigated in a river system (Roane County, TN) that was inundated with fly ash and bottom ash from the Tennessee Valley Authority Kingston coal ash spill in 2008. Elevated total mercury and methylmercury sediment concentrations (relative to upstream sediments) were detected in regions impacted by the ash spill, and our biogeochemical data suggested that the ash may have stimulated methylmercury production in river sediments.</p><p>The results of this dissertation work address the formation of mercury sulfide (along with zinc sulfide) nanoparticles in anaerobic aquatic sediments. In the current mercury methylation paradigm, dissolved mercury species such as Hg(SH)02(aq) and HgS0(aq) are assumed to be the only mercury species that are available for methylation. The results of this dissertation work suggests that in previous studies, HgS0(aq) may have been mistaken as mercury sulfide nanoparticles which may be formed in under supersaturated conditions (with respect to HgS(s)) where DOM is present. Mercury sulfide nanoparticles are a mercury biogeochemical species that has been largely ignored in the research literature and whose role in the mercury biogeochemical cycle and in mercury methylation remains to be investigated.</p><p> This dissertation work also identifies potential sources of mercury to aquatic systems, namely, landscape runoff and CCPs. Atmospheric deposition is currently considered to be the major source of mercury to inland aquatic water bodies compared to sources such as landscape runoff and CCPs. However, in the watershed studied in this dissertation, landscape runoff was identified as a larger source of mercury than atmospheric deposition, suggesting that these so-called `minor' sources may actually be major sources of mercury to watersheds depending on land usage, and should be considered in watershed models. Furthermore, the environmental hazards of mercury-associated with CCPs has typically been determined through leaching experiments, such as the Toxicity Characteristic Leaching Procedure (TCLP), which are not representative of environmental conditions and do not predict that CCPs may influence mercury methylation in aquatic sediments. Thus, in this dissertation work, we suggest that leaching protocols such as the TCLP should be re-evaluated. </p><p>Overall, this dissertation work will be useful in future studies examining mercury speciation and bioavailability to methylating bacteria in aquatic sediments, and the formation of metal sulfide nanoparticles in aquatic systems. Additionally, data on sources of mercury will be useful in developing policies for the regulation of these sources and in assessing the risk to human health from mercury methylation.</p> / Dissertation
2

Microbial colonization and dissolution of mercury sulfide minerals

Vazquez Rodriguez, Adiari Iraida 01 January 2016 (has links)
Mercury (Hg) is a toxic heavy metal that poses significant human and environmental health risks. Mineral-associated Hg is the largest reservoir of Hg in the environment where it can account for nearly 60% of the global Hg mass inventory. A large fraction of this pool is comprised of mercury sulfide (HgS) minerals, including metacinnabar (beta-HgS). HgS minerals have long been considered insignificant sources of Hg to aqueous or atmospheric pools in all but severely acidic environments due to their low solubility and slow abiotic dissolution kinetics. Little previous work has been conducted investigating the bacterial colonization of HgS minerals and the potential role of these mineral-associated communities in impacting the mobility of mineral-hosted Hg. To address this gap in knowledge, the studies within this dissertation employed a combination of field- and laboratory-based methods. Using culture-independent techniques, this work revealed that sulfur-oxidizing bacteria can extensively colonize metacinnabar within aerobic, near neutral pH, creek sediments, suggesting a potential role for chemolithotrophic bacteria in metacinnabar weathering. Within laboratory incubations, the dominant bacterial colonizer (Thiobacillus thioparus), induced extensive release and volatilization of metacinnabar-hosted Hg. These findings expose a new pathway for metacinnabar dissolution and point to mineral-hosted Hg as an underappreciated source of elemental Hg that may contribute to global atmospheric Hg budgets. In addition, this work elucidates the importance of thiosulfate, a major intermediate sulfur species in the environment, in stimulating metacinnabar dissolution. Therefore, the work within this dissertation shows that authigenic HgS minerals are not merely a sink for Hg within non-acidic natural environments and instead are a source of dissolved and gaseous Hg. This work provides critical information for predicting the transport of Hg in the environment and for developing appropriate management and remediation strategies for Hg-contaminated systems. / Engineering and Applied Sciences
3

Mercury Sulfide Dissolution in Environmental Conditions: Thermodynamic and Kinetic Approaches

Jiang, Ping 08 November 2016 (has links)
Mercury (Hg) is a global contaminant of ecosystems and human health risk, with complicated biogeochemical processes. Mercury sulfide (HgS) dissolution has been suggested as a key process in Hg cycling, as it could potentially increase the pool of inorganic Hg (iHg) for the production of methylmercury (MeHg). Despite previous sporadic observations of enhanced HgS dissolution under certain conditions, much remains unclear on mechanisms of HgS dissolution. The objective of my research was to advance the mechanistic understanding of HgS dissolution, concerning re-adsorption of released Hg, effects of thiol-ligands, and Hg speciation. Considering the lack of feasible techniques to differentiate dissolution and re-adsorption processes, I first developed an efficient method using isotope tracer and isotope dilution techniques to investigate the re-adsorption of released Hg during HgS dissolution. The HgS dissolution rate with consideration of re-adsorption was two times the rate calculated from detecting Hg alone in the presence of O2, indicating the importance of Hg re-adsorption during HgS dissolution. I further examined the role of Hg-ligand complexation in HgS dissolution and Hg(II) re-adsorption using a thermodynamic adsorption method, selecting L-cysteine (Cys) as a model compound for low molecular weight ligands and Waskish fulvic acid (FA) for natural dissolved organic matter (DOM). My results suggest that the presence of Cys enhanced HgS dissolution through the decreased re-adsorption of Hg-Cys complex, whereas Waskish FA inhibited HgS dissolution, possibly because of the adsorption of FA on HgS surface that covered dissolution sites. I further employed a geochemical modeling method to study Hg speciation and the relation of iHg speciation to MeHg, aiming to provide a methodological example for potentially evaluating the implications of Hg species distribution during HgS dissolution on MeHg production. I applied geochemical model PHREEQC to the Florida Everglades, a well-studied wetland with model input parameters available, to determine the distribution of iHg in surface water at different sites. The modeling results suggest that sulfide and DOM govern iHg speciation, and the Hg-sulfide and Hg-DOM species are related to MeHg in environmental media but not fish, suggesting the importance of iHg speciation in MeHg production and the complexity of Hg bioaccumulation.

Page generated in 0.0445 seconds