• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 20
  • 18
  • 17
  • 13
  • 12
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of the pre-invasion glycophosphatidylinositol-anchored surface proteins of Plasmodium falciparum merozoites

Venter, Tarryn Lee January 2017 (has links)
Plasmodium falciparum is a protozoan parasite responsible for causing the most severe form of malaria in humans. This species is responsible for over 90% of malaria mortalities which occur predominantly in Africa. An increase in drug resistant parasites in recent years is threatening the progress made against malaria and thus new antimalarial drugs and vaccines are needed to combat this disease. During the intraerythrocytic phase, merozoites egress from mature schizonts to invade new uninfected erythrocytes. Glycophosphatidylinositol (GPI) -anchored proteins cover most of the exterior surface of the merozoite prior to invasion, while other GPI-anchored proteins are released onto the merozoite surface through apical organelle secretions. These proteins are involved in interactions with erythrocytes and are thought to be vital to erythrocyte invasion. GPI-anchored proteins have also been implicated as a cause of pathogenic symptoms and activation of immune components. These proteins are then released or cleaved to enable merozoite entry into the erythrocyte. Several enzymes are thought to be involved in their cleavage including the serine proteases subtilisin-like proteases (SUB) 1 and 2, and phosphatidylinositol-phospholipase C (PIPLC); GPI-anchored proteins are also generally sensitive to phospholipase A2 (PLA2). Cleaved proteins are released into the host blood system, while uncleaved proteins are carried into the erythrocyte during invasion. Merozoites have a limited period in which they retain invasive capacity. A previous lack of available techniques that are specifically adapted to merozoite analysis has resulted in an incomplete understanding of invasion and GPI-anchored protein involvement in invasion. This study aimed to determine how GPI-anchored proteins on the merozoite surface are altered in the invasive phase, and explore the possibility of using merozoite GPI-anchored proteins as potential drug targets to block erythrocyte invasion. Optimised methods of in vitro parasite culturing which produce highly synchronised merozoites was essential to this study. Parasite culturing techniques were optimised by utilising low haematocrit cultures with frequent culture splitting and optimised synchronisation. The “Malarwheel” is a tool that was developed for this research to provide a means for scheduling sorbitol treatments and MACs isolations. This tool and optimised culturing methods enabled large volumes of highly synchronised invasive merozoites to be harvested. Four compounds (vanadate, edelfosine, dioctyl sodium sulfosuccinate (DSS), and gentamicin) suspected to interfere with GPIanchored cleavage or processes were screened on intraerythrocytic stages and merozoites. Antimalarial and anti-invasive properties of these compounds were screened by modified malaria SYBR Green I-based fluorescence (MSF) assay and merozoite invasion assays (MIA) respectively. DSS and gentamicin showed limited potential as antimalarials or as anti-invasive agents. Vanadate and edelfosine both showed antimalarial and anti-invasive activity, while edelfosine was the most potent anti-invasive agent at physiological concentrations. The merozoite GPI-anchored proteome was analysed by sodium dodecyl sulphatepolyacrylamide gel electrophoresis (SDS-PAGE) followed by complete gel lane analyses conducted by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on soluble and pelleted merozoite proteins in samples from either invasive or non-invasive merozoites. Thirteen known or predicted GPI-anchored proteins were identified in samples. Several changes were identified in merozoite GPI-anchored proteins between the invasive phase and after its completion, and minor differences were observed following treatment with edelfosine. Edelfosine showed partial inhibition of erythrocyte invasion, however, the primary cause of inhibition cannot be directly related to interferences with GPI-anchored proteins. These results suggest that GPIanchored proteins are controlled by various complex processes, and are cleaved or processed by diverse mechanisms during the invasive phase. These mechanisms may be controlled by multiple signals which effect proteins or groups of proteins in specific ways. These signals may be influenced by “checkpoints” during invasion processes including the time period after egress from schizonts, and possibly the recognition of erythrocyte targets. These methods and results provide a foundation for future research to enable culturing of P. falciparum parasites specifically for merozoite research, and to identify merozoite proteins active during the invasive phase. These results confirm and challenge previous ideas reported in literature on the GPI-anchored processes of merozoites and further characterise less studied GPIanchored proteins. The results suggest that the processes controlling GPI-anchored proteins may be more complex than previously thought. These results form a basis to further identify and characterise GPI-anchored proteins in the aim to develop antimalarial medications and vaccines that target merozoites and their GPI-anchored processes. / Dissertation (MSc)--University of Pretoria, 2017. / Pharmacology / MSc / Unrestricted
2

Evaluation of the hepatitis B virus particle as a malaria vaccine carrier

Adomavicius, Tomas January 2015 (has links)
Malaria is a major health problem and an effective vaccine is essential for the eradication of the disease. Despite extensive efforts, a malaria vaccine remains elusive due to the parasite's complex life cycle, diverse morphology, and immune system evasion mechanisms. Antibodies against C terminal domain of merozoite surface protein 1 (MSP1-19), a highly conserved protein and the main vaccine candidate for blood-stage malaria, can inhibit erythrocyte invasion by the parasite and alleviate the disease symptoms. However, MSP1-19 is poorly immunogenic and classic protein-in-adjuvant MSP1-19-based vaccine formulations failed to induce strong immune responses due to low immunogenicity and generation of ineffective antibodies. The aim of this study was to use hepatitis B virus core (HBc) particles to increase the immunogenicity of MSP1-19. HBc forms particles with protruding spikes and induces a strong and specific immune response against foreign epitopes inserted at the tips of the spikes. In addition, positioning of MSP1-19 on the particle can influence the accessibility of certain antibody binding sites, possibly altering elicited antibody fine specificity and vaccine efficiency. MSP1-19 domain was inserted into the middle of the HBc sequence so that it is displayed at the tips of the HBc particle. Two HBc-MSP1-19 constructs, having different insert flanking linkers, displayed soluble particle formation after bacterial expression and lysis optimization. The particles were purified and the suitability of these two constructs as malaria vaccine candidates was assessed. Firstly, binding of the conformational anti-MSP1-19 antibodies indicated that MSP1-19 domain in the chimeric proteins has the correct disulphide bond pattern which is crucial for the protective properties of an MSP1-19-based vaccine. Furthermore, electron microscopy imaging and determination of initial 3D structures confirmed that both HBc MSP1-19 constructs form particles resembling the wild-type HBc particles, meaning the insertion of MSP1-19 did not heavily distort the overall HBc particle structure. In addition, it was shown that MSP1-19 domains are displayed at the tips of the particle spikes. Particle formation and foreign epitope display are important for the epitope's immunogenicity improvement. The immunogenicity of the chimeric particles was then assessed in mice. Both constructs elicited similar high antibody titres without the use of additional adjuvants, but no difference was observed between the particulate constructs and a non-particulate control (an MSP1-19-based protein). Interestingly, although both HBc-MSP1-19 and non-particulate MSP1-19-elicited antibodies recognized native malarial parasite, only the particulate construct antibodies demonstrated a moderate parasite growth inhibition while the antibodies from the control group did not show parasite inhibition above the background levels. In conclusion, it was shown that MSP1-19 can be expressed in bacteria as a soluble correctly folded protein fused to HBc. More importantly, the fusion protein is capable of forming immunogenic particles which generate antibodies that recognize native MSP1 and inhibit parasite growth more effectively than the protein without the HBc. Therefore, this work lays grounds and supports further chimeric HBc-MSP1-19 research and development.
3

Purification and characterization of a malaria vaccine candidate: Plasmodium falciparum merozoite surface protein-1 C-terminal processing fragment (MSP-142) expressed by baculovirus in silkworm larvae.

January 2003 (has links)
Miu Fei Fei. / On t.p. "42" are subscripts following the word "MSP-1" in the title. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 117-125). / Abstracts in English and Chinese. / ACKNOWLEGEMENTS --- p.i / ABSTRACT --- p.ii / TABLE OF CONTENTS --- p.v / LIST OF FIGURE --- p.vii / LIST OF ABBREVIATIONS --- p.ix / CHAPTERS: / Chapter 1. --- BACKGROUND OF MALARIA / Chapter 1.1 --- Epidemilogy --- p.2 / Chapter 1.2 --- Mode of Infection --- p.4 / Chapter 1.3 --- Conventional Control & Vaccination --- p.9 / Chapter 1.4 --- Vaccine Candidate PfMSV-142 --- p.16 / Chapter 1.5 --- Cloning and Expression of pfMSP-142 --- p.26 / Chapter 1.6 --- Aims of Study --- p.32 / Chapter 2. --- Materials and Methods / Chapter 2.1 --- Materials --- p.32 / Chapter 2.2 --- Methods --- p.38 / Chapter 3. --- Construction of recombinants N-PfMSP-142 and C- PfMSP-142 / Chapter 3.1 --- Construction of C-PfMSP-l42 --- p.51 / Chapter 3.2 --- Construction ofN-PfMSP-l42 --- p.56 / Chapter 4. --- Purification with IMAC / Chapter 4.1 --- Immobilized Metal Affinity Chromatography (IMAC) --- p.58 / Chapter 4.2 --- Purification ofN-PfMSP-l42 --- p.61 / Chapter 4.3 --- Purification profile of N-PfMSP-142 --- p.68 / Chapter 4.4 --- Purification of C-PfMSP-l42 --- p.70 / Chapter 4.5 --- Purification profile of C-PfMSP-142 --- p.73 / Chapter 4.6 --- Expression pattern of recombinants PfMSP-142 --- p.76 / Chapter 5. --- Purification combined with other chromatography method / Chapter 5.1 --- Affinity chromatography --- p.78 / Chapter 5.2 --- Gel filtration chromatography --- p.80 / Chapter 5.3 --- Ion exchange chromatography --- p.83 / Chapter 5.4 --- Conclusion --- p.93 / Chapter 6. --- Characteristic of IMAC products --- p.94 / Chapter 7. --- Characteristic of N-hisPfMSP-l42 & C-hisPfMSP-l --- p.42 / Chapter 7.1 --- Immunogenitcity of N-PfMSP-l42 and C-PfMSP-142 --- p.100 / Chapter 7.2 --- Competitive ELISA --- p.105 / Chapter 8. --- Discussion --- p.107 / REFERENCE --- p.117
4

Expression and characterization of the 33kDA and 42kDA carboxyl-terminal processing fragment of plasmodium falciparum merozoite surface protein-1 (MSP-1 33 and MSP-1 42) in E. coli. / CUHK electronic theses & dissertations collection

January 2002 (has links)
Leung Wai-hang. / "November 2002." / On t.p. "33" and "42" are subscripts following the word "MSP-1" in the title. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 162-171). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
5

The study on the 42kda carboxyl terminal fragment of plasmodium falciparum merozoite surface protein 1 (Pfmsp-1-42) and its processing fragments for candidate antigen of malarial vaccine. / CUHK electronic theses & dissertations collection

January 2007 (has links)
In the second part of the project, the immunology of PfMSP-133 was studied. During the invasion of merozoites, PfMSP--142 is processed into two fragments with molecular weight of 33kDa and 19kDa. The 19kDa fragment (PfMSP-119) originating from the carboxyl--terminal of PfMSP--142 is relatively more immuno-dominant in different malarial species such as P. falciparum, P. vivax and P. yoelii. In the past, only limited researches about PfMSP-1 33 were performed. Apart from its difficulty in expression, PfMSP-1 33 was also believed to be incapable of inducing protection. / Nevertheless, following the breakthrough of expressing recombinant PfMSP-1 33 in our laboratory, we have demonstrated in this study that recombinant MSP-133 can elicit antibodies with a titer up to a million. Also, we observed that MSP-133 can help MSP-119 to induce protective immunity and such effect is independent from the covalent linkage between these two proteins. Most importantly, our results show that recombinant PfMSP-133 can elicit the production of antibodies that can potentiate the inhibitory effect of anti-MSP-142 serum at high serum dilution. Results of this study give new insights in malarial vaccine development in terms of optimizing the use of adjuvant and immunization regimens. / The 42kDa carboxyl terminal fragment of Plasmodium falciparum Merozoite Surface Protein-1 (PfMSP--142) is one of the most promising candidate antigens in the development of malarial vaccine. In vivo experiments in the 1990's showed that Aotus monkeys immunized with PfMSP--142 were protected from malarial challenge. Later on, other experiments also demonstrated the possibility of using recombinant PfMSP-142 as candidate antigen for malarial vaccine. Previously, recombinant PfMSP-142 (Bvp42) was expressed with the baculovirus expression system and characterized in our laboratory. / The aim of the first part of this project is to improve the production of Bvp42. Experimental results have shown that the expression level of Bvp42 was increased under a BMN compatible baculovirus expression vector---pVL1393. Besides, a codon optimized MSP-142 nucleotide is constructed for the construction of a baculovirus carrying codon optimized MSP-142 gene and aimed for higher expression level. Unfortunately, no Bvp42 expression is observed in the transfection samples and the reason of this observation is unclear. Meanwhile, the purification of Bvp42 was also improved. Pretreatment of the hemolymph with Q--sepharose before affinity chromatography could enhance the purity of the final product. / Yuen, Sai-hang Don. / "July 2007." / Adviser: Walter K. K. Ho. / Source: Dissertation Abstracts International, Volume: 69-01, Section: B, page: 0220. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 183-195). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
6

Parasite and host factors that drive heterogeneity in human malaria

Amanfo, Seth Appiah January 2018 (has links)
Malaria affects over half of the world's population and causes half a million deaths annually, especially in Sub-Saharan Africa. Four species of the apicomplexan Plasmodium parasite (P. falciparum, P. ovale, P. malariae and P. vivax) are responsible for malaria in Africa. Both parasite and host factors contribute to heterogeneity in the risk of developing malaria, clinical manifestation of the disease as well as the number of treatments required to clear parasites. The epidemiology of the different species, and the role of exposure to mixed-species Plasmodium co-infections in generating heterogeneity remains poorly studied. Being an obligate intracellular parasite the blood-stage life cycle of the Plasmodium parasite takes place in the erythrocytes of the human host. The surfaces of these erythrocytes are the medically important ABO blood group antigens that have been reported to influence the susceptibility or otherwise of an individual developing severe malaria. In this thesis I have considered the contributions of the species of Plasmodium parasites and the ABO blood group of the host in driving heterogeneity in human malaria. The aims of this thesis were to determine: (i) the seroepidemiology of the different Plasmodium species in two mesoendemic African populations (Zimbabwe and Sudan); (ii) to determine if heterogeneity in clinical presentations of malaria (history of fever, body temperature and parasitaemia) and response to drug treatment is related to exposure to single vs. mixed-Plasmodium species infection; (iii) the spatial and temporal dynamics of malaria prevalence and Plasmodium species distribution in a mesoendemic village in eastern Sudan; (iv) gene expression changes in 3D7 P. falciparum parasites as they infect erythrocytes of different ABO blood group donors. For aims (i to iii) I developed an enzyme-linked immunosorbent assay using antigens derived from Plasmodium merozoite surface protein 1, also known as MSP-119, to detect IgG antibodies to all four malaria parasite species in Zimbabwean and Sudanese populations. In the Zimbabwean study, plasma samples from 100 individuals each (aged 5-18 years) from three villages (Burma Valley, Mutoko and Chiredzi) were screened for exposure to Plasmodium parasites. In Daraweesh, Sudan, plasma samples from 333 individuals (aged 1-74 years) who had experienced a first malaria episode between 1990 and 2000 were recruited into the study. For study aim (iv) I cultured a single clone of 3D7 P. falciparum parasite using erythrocytes of individuals of different ABO blood group types, harvested parasite RNA and sequenced it to determine gene expression changes in the different hosts. I showed that human IgG antibodies to MSP-119 antigens of the four Plasmodium species are species-specific and do not cross-react. In both study populations almost all antibody responses involved P. falciparum, and single-species responses were almost exclusively directed against P. falciparum antigens. Mixed-species responses accounted for more than a third of responses, and were associated with chloroquine treatment failure, with significantly high proportion of individuals with mixed-species infections requiring repeated treatment with chloroquine/sulfadoxine-pyrimethamine for parasite clearance. This finding highlights the need for a sensitive method for detecting mixed-species malaria infections to enable the assessment of the true prevalence and magnitude of the disease burden caused by the non-falciparum species in endemic populations. Drug treatment failures associated with mixed species infections have significant impact on malaria morbidity and mortality. Treatment failure or partial parasite clearance has the potential to allow dormant liver stages of P. vivax and P. ovale to become a source of parasite reservoir for onward transmission. Furthermore, untreated low-grade chronic infections caused by P. malariae have been reported to cause systemic diseases many years after the primary infection. Spatial analysis of malaria epidemiology showed that malaria parasite transmission in Daraweesh was focal, and that infections are not randomly distributed in the village. Two space-time clusters of significantly increased malaria risk were identified (1993- 1999, and 1998-1999) with marked variations between households, but little or no variation in the species of Plasmodium over time. Similarly, multiple significant clusters were identified for the parasite species; three for P. falciparum, two for P. vivax and P. malariae, and one for P. ovale. These clusters had overlapping time frames, with some of the species significantly infecting the same households. This suggests that even in a small geographic area malaria transmission shows heterogeneity, and that such data can provide useful information to guide malaria control efforts. Finally, I demonstrated that 3D7 P. falciparum parasite growth was similar in the erythrocytes of different blood group donors, and provide preliminary data to show that the non-coding RNA gene, PF3D7_1370800, is differentially expressed in blood group A donors relative to blood groups B and O donors. Further research is needed to better understand the role of this gene in malaria pathology. All together, these findings will aid malaria researchers and other stakeholders in making informed choices about tools for diagnosing Plasmodium species, and control programmes targeting eradication of malaria caused by all Plasmodium species, as is the case of incorporating these findings into current malaria research in Sudan.
7

Roles of the MSP-1₃₃ in the induction of anti-malaria response.

January 2007 (has links)
Tam, Hou Si. / 33 in title is subscript. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 174-187). / Abstracts in English and Chinese. / THESIS COMMITTEE --- p.i / ACKNOWLEDGEMENTS --- p.ii / ABSTRACT --- p.iii / 摘要 --- p.v / TABLE OF CONTENTS --- p.vii / LIST OF FIGURES --- p.xii / LIST OF TABLES --- p.xvii / LIST OF ABBREVIATIONS --- p.xviii / CHAPTER / Chapter 1. --- INTRODUCTION / Chapter 1.1 --- Malaria --- p.1 / Chapter 1.2 --- Malaria is a public health problem --- p.1 / Chapter 1.3 --- Malarial parasite --- p.3 / Chapter 1.4 --- Life cycle of P. falciparum --- p.3 / Chapter 1.4.1 --- The pre-erythrocytic stage --- p.3 / Chapter 1.4.2 --- The asexual erythrocytic stage --- p.3 / Chapter 1.4.3 --- The sexual transmission stage --- p.6 / Chapter 1.5 --- Chemoprophylaxis and chemotherapy of malaria --- p.7 / Chapter 1.6 --- Drug resistance of malaria parasite --- p.7 / Chapter 1.7 --- The progress for malaria vaccine --- p.10 / Chapter 1.8 --- Vaccine candidates for asexual erythrocytic stage --- p.11 / Chapter 1.9 --- Merozoite Surface Protein-1 (MSP-1) --- p.13 / Chapter 1.9.1 --- Structure of MSP-1 --- p.13 / Chapter 1.9.2 --- The processing of MSP-1 --- p.17 / Chapter 1.9.3 --- MSP-1 as a blood-stage vaccine --- p.19 / Chapter 1.9.4 --- The vaccine potency of MSP-133 --- p.23 / Chapter 1.10 --- Merits of E. coli expression system --- p.25 / Chapter 1.11 --- Aim of study --- p.26 / Chapter 2. --- MATERIALS AND METHODS / Chapter 2.1 --- Materials --- p.30 / Chapter 2.2 --- Methods --- p.39 / Chapter 3. --- EXPRESSION AND PURIFICATION OF RECOMBINANT MSP-l33kv+19 PROTEIN / Chapter 3.1 --- Introduction --- p.63 / Chapter 3.2 --- Results / Chapter 3.2.1 --- Construction of pET32a/MSP-l33kv+19 expression vector --- p.64 / Chapter 3.2.2 --- SDS-PAGE analysis of the expressed protein --- p.74 / Chapter 3.2.3 --- Western blot analysis of the expressed protein --- p.78 / Chapter 3.2.4 --- Modification of the expression conditions --- p.78 / Chapter 3.2.5 --- Protein purification by IMAC --- p.82 / Chapter 3.2.6 --- Cleavage of fusion partner from the rMSP-133kv+19 protein --- p.82 / Chapter 3.2.7 --- Verification of non-fused recombinant MSPl33kv+19 protein by N-terminal amino acid sequencing --- p.86 / Chapter 3.2.8 --- Separation of target protein from the fusion mixture by IMAC --- p.86 / Chapter 3.2.9 --- Separation of digestion product by Size Exclusion Chromatography --- p.89 / Chapter 3.2.10 --- Conformational test of the purified protein --- p.89 / Chapter 3.2.11 --- Separation of target protein from contaminants by Anion-Exchange Chromatography --- p.92 / Chapter 3.2.12 --- Separation of target protein from contaminants by Immuno-Affinity Chromatography --- p.95 / Chapter 3.3 --- Conclusion --- p.95 / Chapter 4. --- IMMUNOLOGICAL CHARACTERIZATION OF BACTERIAL EXPRESSED rMSP-l33kv+19 / Chapter 4.1 --- Introduction --- p.97 / Chapter 4.2 --- Results / Chapter 4.2.1 --- Immunogenicity of recombinant NfMSP-133kV+19 protein --- p.98 / Chapter 4.2.2 --- Specificity of anti-NfMSP-133kv+19 sera to MSP-l33kv. MSP-l33 and MSP-l19 --- p.98 / Chapter 4.2.3 --- Cross reactivity of anti-MSP-133kv+19 and anti-BVp42 serum --- p.103 / Chapter 4.2.4 --- Competitive ELISA --- p.103 / Chapter 4.2.5 --- Test for the presence of inhibitory B-cell epitopes on rMSP-l33kv+19 --- p.111 / Chapter 4.2.6 --- In vitro parasitic growth inhibition assay --- p.113 / Chapter 4.3 --- Conclusion --- p.115 / Chapter 5. --- EXPRESSION AND PURIFICATION OF RECOMBINANT MSP-l33kc+19 PROTEIN / Chapter 5.1 --- Introduction --- p.116 / Chapter 5.2 --- Results / Chapter 5.2.1 --- Construction of pET32a/MSP-133kv+19 expression vector --- p.117 / Chapter 5.2.2 --- Expression of recombinant MSP-133kc+19 protien (rMSP-133kc+19) --- p.124 / Chapter 5.2.3 --- Purification of rMSP-l33kc+19 by IMAC --- p.127 / Chapter 5.2.4 --- Cleavage of fusion partner from target protein --- p.127 / Chapter 5.2.5 --- Construction of pRSETA/MSP-l3X33kc+19 expression vector --- p.135 / Chapter 5.2.6 --- SDS-PAGE analysis of the protein expression --- p.146 / Chapter 5.3 --- Conclusion --- p.153 / Chapter 6. --- DISCUSSION / Chapter 6.1 --- Expression of rMSP-l33kv+19 --- p.154 / Chapter 6.2 --- Purification of rMSP-l3.3kv+19 --- p.156 / Chapter 6.3 --- Conformational test of rMSP-133kv+19 --- p.157 / Chapter 6.4 --- Biological and immunological activity of NfMSP-133kv+19 --- p.158 / Chapter 6.5 --- Expression of rMSP-133kc+19 --- p.166 / Chapter 6.6 --- Future prospects --- p.167 / REFERENCES --- p.174 / APPENDICES / Chapter 1. --- HiTrap NHS-activated HP for ligand coupling procedure --- p.188 / Chapter 2. --- Reuse of Ni+-NTA Resin procedure --- p.190 / Chapter 3. --- Sequence alignment of MSP-133 (MAD20 & Welcome/Kl alleles) --- p.191 / Chapter 4. --- Nucleotide sequence and amino acid sequence of P. falciparum MSP-l33kv+19 --- p.192 / Chapter 5. --- Nucleotide sequence and amino acid sequence of P. falciparum MSP-l33kc+19 --- p.193 / Chapter 6. --- "Nucleotide sequence and amino acid sequence of P. falciparum MSP-142 (3D7 isolate, MAD20 allele)" --- p.194 / Chapter 7. --- Amino acid sequence of Plasmodium falciparum MSP-l42 --- p.195
8

Identification of potential new merozoite surface proteins in the Plasmodium falciparum 3D7 genome

Santamaria, Cynthia January 2005 (has links)
Here we report the identification of 15 potential MSP-like proteins from the P. falciparum 3D7 genome using a bioinformatics-based approach. One candidate, renamed URF1, was further characterized by cloning into the Gateway system. We were able to demonstrate expression of URF1 during the blood stage, especially the trophozoite, early and late schizont phases, by immunofluorescence on infected RBC using antisera raised in mice with an URF1 DNA vaccine. URF1 expression in the merozoite stage could not be confirmed in this study. Future co-localization and immunosorbent electron microscopy (EM) experiments would help us determine the exact localization of URF1 on the parasite before officially categorizing URF1 as a merozoite surface protein. As a whole, this research project demonstrates the success of using bioinformatics in identifying potential new MSP-like proteins found in the malaria genome. Further characterization and sequence analysis of the other 15 candidates may reveal other novel antigens expressed during the erythrocytic stage, especially in the merozoite stage. Such antigens may prove to be good vaccine candidates.
9

Identification of potential new merozoite surface proteins in the Plasmodium falciparum 3D7 genome

Santamaria, Cynthia January 2005 (has links)
No description available.
10

Contribution to the understanding of red blood cell invasion by Plasmodium Falciparum : study of parasites motility on rigid substrates / Compréhension du mécanisme d'invasion des globules rouges par Plasmomodium Falciparum : apport de l'étude de la motilité du parasite sur substrat rigide

Casanova Morales, Nathalie 18 December 2012 (has links)
Le paludisme est causé par un parasite appelé Plasmodium falciparum, transmis lors de la piqûre d'un moustique. Au stade sanguin, ce parasite unicellulaire, de forme ovoïde, envahit les globules rouges, s'y multiplie avant d'être libéré pour une nouvelle invasion à la fin d'un cycle de 48 heures. Ce travail de thèse porte sur le mouvement du parasite au cours du processus d'invasion. L'étape préalable à la pénétration du parasite dans sa cellule hôte est le mouvement de réorientation permettant de mettre en contact son complexe apical avec la membrane de la cellule hôte. Afin de comprendre comment le parasite génère les mouvements nécessaires à cette réorientation sans l'aide de flagelle, de cil ou de déformation, notre approche est d'observer et de décrire le mouvement des parasites sur un substrat rigide, au travers d'une analyse détaillée des trajectoires du parasite. Nous observons que le parasite explore tous les degrés de liberté qui lui sont accessibles compte tenu de son attachement au substrat: translation et rotation dans le plan et réorientation de sa partie apicale. Nous avons identifié trois types de mouvement: confiné, dirigé et circulaire. Nous caractérisons ces trajectoires et mouvements en utilisant une analyse de corrélation et en discutant les mécanismes possibles à l'origine de ces trajectoires particulières. Enfin, nous examinons le rôle des constituants du cytosquelette sur le mouvement du parasite, en affectant spécifiquement les filaments d'actine et les microtubules. Les conséquences de la polymérisation de ces structures sur le mouvement du parasites sont discutées. / Malaria is caused by a parasite called Plasmodium falciparum, transmitted via mosquito's bites. At the blood stage, these unicellular ovoidal parasites invade red blood cells (RBCs), multiply and are released at the end of a 48h cycle, ready for new invasions. This work is focused on the motion of the parasite during the invasion process. To penetrate into the host cell, the parasite reorient its apical part towards the RBC membrane. For this purpose, the parasite generates different movements that allow him to find the correct position to form a specific junction to invade the cell. To understand how the parasite is able to move and reorient without the aid of cilia, flagella or deformations, we performed a detailed analysis of the parasite trajectories and orientation on rigid substrate. We observe that the substrate-attached parasite explores all degrees of freedom with in-plane rotation, translation and flipping. Three types of motion have been identified: confined, directed circular . We characterize these trajectories and motions using correlation analysis and we discuss the possible mechanisms that could explain these peculiar trajectories. Finally, to determine the role of the cytoskeleton components in the parasite motion, specific structures such as the actin filaments and the microtubules have been specifically affected. We will describe and discuss the consequences of depolymerizing or stabilizing these structures.

Page generated in 0.0551 seconds