• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 15
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modulation de l’expression du transporteur vésiculaire du glutamate : implication dans la plasticité des neurones dopaminergiques

Dal Bo, Grégory 07 1900 (has links)
De nombreuses études ont établi que la majorité des neurones libèrent plus qu’une substance chimique. Il est bien connu que les neurones peuvent co-exprimer et co-libérer des neuropeptides en plus de leur neurotransmetteur, mais des évidences de la co-libération de deux petits neurotransmetteurs à action rapide se sont accumulées récemment. Des enregistrements électrophysiologiques ont aussi montré que des neurones sérotoninergiques et dopaminergiques isolés peuvent libérer du glutamate quand ils sont placés en culture. De plus, la présence de glutamate et de glutaminase a été détectée dans des neurones sérotoninergiques, dopaminergiques et noradrénergiques par immunomarquage sur des tranches de cerveau. Malheureusement, en considérant le rôle métabolique du glutamate, sa détection immunologique n’est pas suffisante pour assurer le phénotype glutamatergique d’un neurone. Récemment, la découverte de trois transporteurs vésiculaires du glutamate (VGLUT1-3) a grandement facilité l’identification des neurones glutamatergiques. Ces transporteurs sont nécessaires pour la libération de glutamate et constituent les premiers marqueurs morphologiques du phénotype glutamatergique. Il a été démontré que des neurones noradrénergiques expriment VGLUT2 et que des neurones sérotoninergiques expriment VGLUT3. Mais aucune évidence d’expression d’un des sous-types de VGLUT n’a été reportée pour les neurones dopaminergiques. Le but de notre travail était d’identifier quel sous-type de VGLUT est exprimé par les neurones dopaminergiques mésencéphaliques, et de déterminer si le phénotype glutamatergique de ces neurones peut être modulé dans des conditions particulières. Premièrement, nous avons utilisé des microcultures pour isoler les neurones dopaminergiques et des doubles marquages immunocytochimiques pour observer l’expression de VGLUT dans les neurones positifs pour la tyrosine hydroxylase (TH). Nous avons montré que la majorité (80%) des neurones TH+ isolés exprime spécifiquement VGLUT2. Cette expression est précoce au cours du développement in vitro et limitée aux projections axonales des neurones dopaminergiques. Toutefois, cette forte expression in vitro contraste avec la non-détection de ce transporteur dans les rats adultes in vivo. Nous avons décidé ensuite de regarder si l’expression de VGLUT2 pouvait être régulée pendant le développement cérébral de jeunes rats et sous des conditions traumatiques, par double hybridation in situ. Entre 14 et 16 jours embryonnaires, les marquages de VGLUT2 et de TH montraient une superposition significative qui n’était pas retrouvée à des stades ultérieurs. Dans le mésencéphale de jeunes rats postnataux, nous avons détecté l’ARNm de VGLUT2 dans environs 1-2% des neurones exprimant l’ARNm de TH dans la substance noire et l’aire tegmentaire ventrale (ATV). Pour explorer la régulation de l’expression de VGLUT2 dans des conditions traumatiques, nous avons utilisé la 6-hydroxydopamine (6-OHDA) pour léser les neurones dopaminergiques dans les jeunes rats. Dix jours après la chirurgie, nous avons trouvé que 27% des neurones dopaminergiques survivants dans l’ATV exprimaient l’ARNm de VGLUT2 dans les rats 6-OHDA. Finalement, nous avons observé la colocalisation de la protéine VGLUT2 dans les terminaisons TH positives par microscopie électronique. Dans les rats normaux, la protéine VGLUT2 est retrouvée dans 28% des terminaisons axonales TH dans le noyau accumbens. Dans les rats lésés à la 6-OHDA, nous avons observé une diminution considérable des terminaisons TH positives, et une augmentation dans la proportion (37%) des terminaisons dopaminergiques présentant du VGLUT2. Nos résultats suggèrent que le phénotype glutamatergique des neurones dopaminergiques est régulé au cours du développement, peut être réactivé dans des états pathologiques, et que ces neurones peuvent libérer du glutamate dans conditions spécifiques. / Numerous studies have established that the majority of neurons release more than one chemical substance. It is well known that neurons can co-express and co-release neuropeptides in addition to their neurotransmitter, but evidence of co-release of two small and fast-acting neurotransmitters has been accumulated recently. Electrophysiological recordings have also shown that isolated serotonine and dopamine neurons can release glutamate as a co-transmitter when they are placed in culture. Furthermore, the presence of glutamate and glutaminase has been detected in serotonine, dopamine and noradrenaline neurons by immunolabelling in brain slices. Unfortunately, considering the metabolic role of glutamate, its immunodetection is not sufficient to assert the glutamatergic phenotype of a neuron. Recently, the discovery of three vesicular glutamate transporters (VGLUT1-3) has greatly facilitated the identification of glutamate neurons. These transporters are necessary for the glutamate release by neurons and constitute the first molecular markers of a glutamatergic phenotype. Interestingly, it was demonstrated that some noradrenaline neurons express VGLUT2 and that some serotonin neurons express VGLUT3. But no evidence for expression of any VGLUT subtypes was initially reported for dopamine neurons. The goal of our work was to identify which VGLUT subtype is expressed by mesencephalic dopamine neurons, and to determine if the glutamatergic phenotype of these neurons can be modulated under specific conditions. First, we used microcultures to isolate dopamine neurons and double immunocytochemistry to visualize VGLUT expression in tyrosine hydroxylase (TH) positive neurons. We showed that the majority (80%) of isolated TH+ neurons express specifically VGLUT2. This expression occurred early during in vitro development and was limited to axonal projections of dopamine neurons. However, this strong expression in vitro contrasted with the lack of detection of this transporter in adult rats in vivo. We next decided to investigate if VGLUT2 expression could be regulated during brain development of young rats and under traumatic conditions, using double in situ hybridization. At embryonic days 14 to 16, VGLUT2 and TH labelling displayed significant overlap which was no longer found at later stages. In postnatal mesencephalon of young rats, we detected VGLUT2 mRNA in approximately 1-2% of neurons expressing TH mRNA in the substantia nigra and in ventral tegmental area (VTA). To explore the regulation of VGLUT2 expression under traumatic condition, we used 6-hydroxydopamine (6-OHDA) to damage dopamine neurons in young rats. Ten days post-surgery, we found that 27% of surviving dopamine neurons in the VTA expressed VGLUT2 mRNA in 6-OHDA animals. Finally, we observed the colocalisation of VGLUT2 protein in TH positive terminals by electron microscopy. In normal rats, VGLUT2 protein was found in 28% of TH positive axon terminals in nucleus accumbens. In 6 OHDA-lesioned rats, we observed a considerable reduction of TH positive terminals, and an increase in the proportion (37%) of dopamine terminals displaying VGLUT2. Our results suggest that the glutamatergic phenotype of dopamine neurons is developmentally regulated, can be reactivated under pathological states, and that these neurons are able to release glutamate under specific conditions.
22

Aferências hipotalâmicas para a área tegmental ventral, núcleo tegmental rostromedial e núcleo dorsal da rafe. / Hypothalamic afferents to the ventral tegmental area, rostromedial tegmental nucleus and dorsal rafe nucleus.

Lima, Leandro Bueno 23 June 2015 (has links)
O hipotálamo modula comportamentos relacionados à motivação, recompensa e punição através de projeções para a área tegmental ventral (VTA), o núcleo dorsal da rafe (DR) e o núcleo tegmental rostromedial (RMTg). Nesse estudo, investigamos através de métodos de rastreamento retrógrado as entradas hipotalâmicas da VTA, do DR e do RMTg e, se neurônios hipotalâmicos individuais inervam mais do que uma dessas regiões. Também determinamos uma possível assinatura GABAérgica ou glutamatérgica das aferências hipotalâmicas, através de rastreamento retrógrado combinado com métodos de hibridação in situ. Observamos que VTA, DR e RMTg recebem um padrão bastante semelhante de entradas hipotalâmicas originando de neurônios de projeção glutamatérgicas e GABAérgicas, a maioria deles (> 90%) inervando somente um desses três alvos. Nossos achados indicam que entradas hipotalâmicas são importantes fontes de sinais homeostáticos para a VTA, o DR e o RMTg. Eles exibem um alto grau de heterogeneidade que permite de excitar ou inibir as três estruturas de forma independente ou em conjunto. / The hypothalamus modulates behaviors related to motivation, reward and punishment via projections to the ventral tegmental area (VTA), dorsal raphe nucleus (DR), and rostromedial tegmental nucleus (RMTg). In this study we investigated by retrograde tracing methods hypothalamic inputs to the VTA, DR, and RMTg, and whether individual hypothalamic neurons project to more than one of these structures. We also determined a possible GABAergic or glutamatergic phenotype of hypothalamic afferents, by combining retrograde tracing with in situ hybridization methods. We found that VTA, DR, and RMTg receive a very similar set of hypothalamic afferents originating from glutamatergic and GABAergic hypothalamic projection neurons, the majority of them (> 90%) only innervating one of these structures. Our findings indicate that hypothalamic inputs are important sources of homeostatic signals for the VTA, DR, and RMTg. They exhibit a high degree of heterogeneity which permits to activate or inhibit the three structures either independently or jointly.
23

Effects of glial cell line-derived neurotrophic factor (GDNF) on mouse fetal ventral mesencephalic tissue

Nevalainen, Nina January 2008 (has links)
<p>The symptoms of Parkinson's disease occur due to degeneration of dopamine neurons in substantia nigra. It has been demonstrated that glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor when it comes to protect and enhance survival of dopamine neurons in animal models of Parkinson's disease. The aim of this study was to evaluate short- and long-term effects of GDNF on survival and nerve fiber outgrowth of dopamine cells and astrocytic migration in mouse fetal ventral mesencephalic (VM) tissue. Primary tissue cultures were made of mouse fetal VM tissue and evaluated at 7 and 21 days in vitro (DIV) in terms of dopaminergic nerve fiber outgrowth and astrocytic migration when developed with GDNF present, partially, or completely absent. The results revealed that VM tissue cultured in the absence of GDNF did not exhibit any significant differences in migration of astrocytes or dopaminergic nerve fiber outgrowth neither after 7 DIV nor after 21 DIV, when compared with tissue cultured with GDNF present. Migration of astrocytes and dopaminergic nerve fiber outgrowth reached longer distances when tissue was left to develop for 21 DIV in comparison with 7 DIV. In order to study the long-term effects of GDNF, mouse fetal dopaminergic tissue was transplanted into the ventricles of adult mice and evaluated after 6 months. No surviving dopamine neurons were present in the absence of GDNF. In contrast dopamine neurons developed with GDNF did survive, indicating that GDNF is an essential neurotrophic factor when it comes to long-term dopamine cell survival. More cases have to be assessed in the future in order to strengthen the findings. Thus, transplanted dopamine neurons will be assessed after 3 and 12 months in order to map out when dopamine neurons deprived of GDNF undergo degeneration.</p>
24

On dopamine neurons : nerve fiber outgrowth and L-DOPA effects

af Bjerkén, Sara January 2008 (has links)
Parkinson’s disease is a disorder mainly characterized by progressive degeneration of dopamine producing neurons in the substantia nigra of the midbrain. The most commonly used treatment strategy is to pharmacologically restore the lost function by the administration of the dopaminergic precursor L-DOPA. Another treatment strategy is to replace the degenerated neurons with immature fetal ventral mesencephalic tissue, or ultimately stem cell-derived tissue. Grafting trials have, however, revealed poor reinnervation capacity of the grafts, leaving much of the striata dopamine-denervated. An additional drawback is the upcoming of dyskinesia (involuntary movements), a phenomenon also observed during L-DOPA treatment of Parkinson’s disease patients. Attempts to characterize nerve fiber formation from dopamine neurons have demonstrated that the nerve fibers are formed in two morphologically diverse outgrowth patterns, one early outgrowth seen in the absence of astrocytes and one later appearing outgrowth seen in co-existence with astrocytes. The overall objective of this thesis has been to study the dopaminergic outgrowth including guidance of nerve fiber formation, and to look into the mechanisms of L-DOPA-induced dyskinesia. The first paper in this thesis characterizes the different outgrowth patterns described above and their relation to different glial cells. The study demonstrated the two different outgrowth patterns to be a general phenomenon, applying not only to dopamine neurons. Attempts of characterization revealed no difference of origin in terms of dopaminergic subpopulations, i.e. A9 or A10, between the outgrowth patterns. Furthermore, the “roller-drum” technique was found optimal for studying the dual outgrowth sequences. The second and the third paper also utilized the “roller-drum” technique in order to promote both patterns of neuronal fiber formation. The effects of glial cell line-derived neurotrophic factor (GDNF) on the formation of dopamine nerve fibers, was investigated. Cultures prepared from gdnf knockout mice revealed that dopaminergic neurons survive and form nerve fiber outgrowth in the absence of GDNF. The dopaminergic nerve fibers exhibited an outgrowth pattern consistent with that previous observed in rat. GDNF was found to exert effect on the glial-associated outgrowth whereas the non-glial-associated was not affected. Astrocytic proliferation was inhibited using cytosine β-D-arabinofuranoside, resulting in reduced glial-associated outgrowth. The non-glial-associated dopaminergic outgrowth was on the other hand promoted, and was retained over longer time in culture. Furthermore, the non-glial-associated nerve fibers were found to target the fetal frontal cortex. Different developmental stages were shown to promote and affect the outgrowths differently. Taken together, these data indicate and state the importance of astrocytes and growth factors for neuronal nerve fiber formation and guidance. It also stresses the importance of fetal donor age at the time for transplantation. The fourth and fifth studies focus on L-DOPA dynamics and utilize in vivo chronoamperometry. In study four, 6-OHDA dopamine-depleted rats were exposed to chronic L-DOPA treatment and then rated as dyskinetic or non-dyskinetic. The electrochemical recordings demonstrated reduced KCl-evoked release in the intact striatum after chronic L-DOPA treatment. Time for maximal dopamine concentration after L-DOPA administration was found to be shorter in dyskinetic animals than in non-dyskinetic animals. The serotonergic nerve fiber content in the striatum was evaluated and brains from dyskinetic animals were found to exhibit significantly higher nerve fiber density compared to non-dyskinetic animals. Furthermore, the mechanisms behind the conversion of L-DOPA to dopamine in 6-OHDA dopamine-depleted rats were studied. Local administration of L-DOPA in the striatum increased the KCl-evoked dopamine release in the intact striatum. Acute application of L-DOPA resulted sometimes in a rapid conversion to dopamine, probably without vesicle packaging. This type of direct conversion is presumably occurring in non-neuronal tissue. Furthermore, KCl-evoked dopamine releases were present upon local application of L-DOPA in the dopamine-depleted striatum, suggesting that the conversion to dopamine took place elsewhere, than in dopaminergic nerve fibers. In conclusion, these studies state the importance of astrocytes for neuronal nerve fiber formation and elucidate the complexity of L-DOPA conversion in the brain.
25

Dopamine neurons in ventral mesencephalon : interactions with glia and locus coeruleus

Berglöf, Elisabet January 2008 (has links)
Parkinson’s disease is a progressive neurodegenerative disorder, characterized by a depletion of the dopaminergic neurons in the substantia nigra. The cause of the disease is yet unknown but age, oxidative stress, and neuroinflammation are some of the features involved in the degeneration. In addition, substantial cell death of noradrenergic neurons occurs in the locus coeruleus (LC). Noradrenaline has been suggested to protect the dopamine neurons from oxidative stress and neuroinflammation. The main treatment of Parkinson’s disease is Levo-dopa, although severe side effects arise from this therapy. Hence, grafting fetal ventral mesencephalic (VM) tissue into the adult striatum has been evaluated as an alternative treatment for Parkinsons’s disease. However, the survival of the grafted neurons is limited, and the dopamine-denervated striatum does not become fully reinnervated. Therefore, elucidating factors that enhance dopamine nerve fiber formation and/or survival of the grafted neurons is of utmost importance. To investigate dopamine nerve fiber formation and the interactions with glial cells, organotypic VM tissue cultures were utilized. Two morphologically different nerve fiber outgrowths from the tissue slice were observed. Nerve fibers were initially formed in the absence of migrating astrocytes, although thin vimentin-positive astrocytic processes were detected within the same area. A second, persistent nerve fiber outgrowth was observed associated with migrating astrocytes. Hence, both of these nerve fiber outgrowths were to some extent dependent on astrocytes, and appeared as a general feature since this phenomenon was demonstrated in β-tubulin, tyrosine hydroxylase (TH), and aldehyde dehydrogenase A1 (ALDH1)-positive nerve fibers. Neither oligodendrocytes (NG2-positive cells), nor microglia (Iba-1-positive cells) exerted any effect on these two neuronal growths. Since astrocytes appeared to influence the nerve fiber formation, the role of proteoglycans, i.e. extracellular matrix molecules produced by astrocytes, was investigated. β-xyloside was added to the cultures to inhibit proteoglycan synthesis. The results revealed a hampered astrocytic migration and proliferation, as well as a reduction of the glia-associated TH-positive nerve fiber outgrowth. Interestingly, the number of cultures displaying the non-glia-mediated TH-positive nerve fibers increased after β-xyloside treatment, although the amount of TH-protein was not altered. Thus, proteoglycans produced by astrocytes appeared to be important in affecting the dopamine nerve fiber formation. The noradrenaline neurons in LC have been suggested to protect dopamine neurons from damage. Therefore, the interaction between VM and LC was evaluated. Using the intraocular grafting method, fetal VM and LC were grafted either as single grafts or as VM+LC co-grafts. Additionally, the recipient animals received 2% blueberry-enriched diet. The direct contact of LC promoted graft volume and survival of TH-positive neurons in the VM grafts. The number of dopamine neurons, derived preferably from the A9 (ALDH1/TH-positive) was increased, whereas the dopamine neurons from the A10 (calbindin/TH-positive) were not affected. A dense dopamine-β-hydroxylase (DBH)-positive innervation was correlated to the improved survival. Blueberry-enriched diet enhanced the number of TH-positive neurons in VM, although the graft size was not altered. The combination of blueberries and the presence of LC did not yield additive effects on the survival of VM grafts. The attachment of VM or the addition of blueberries did not affect the survival of TH-positive neurons in LC grafts. The number of Iba-1-positive microglia was decreased in co-grafted VM compared to single VM transplants. The addition of blueberries reduced the number of Iba-1-positive microglia in single VM transplants. Hence, the direct contact of LC or the addition of blueberries enhanced the survival of VM grafts. Taken together, these data demonstrate novel findings regarding the importance of astrocytes for the nerve fiber formation of dopamine neurons. Further, both the direct attachment of LC or antioxidant-enriched diet promote the survival of fetal VM grafts, while LC is not affected.
26

Effects of glial cell line-derived neurotrophic factor (GDNF) on mouse fetal ventral mesencephalic tissue

Nevalainen, Nina January 2008 (has links)
The symptoms of Parkinson's disease occur due to degeneration of dopamine neurons in substantia nigra. It has been demonstrated that glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor when it comes to protect and enhance survival of dopamine neurons in animal models of Parkinson's disease. The aim of this study was to evaluate short- and long-term effects of GDNF on survival and nerve fiber outgrowth of dopamine cells and astrocytic migration in mouse fetal ventral mesencephalic (VM) tissue. Primary tissue cultures were made of mouse fetal VM tissue and evaluated at 7 and 21 days in vitro (DIV) in terms of dopaminergic nerve fiber outgrowth and astrocytic migration when developed with GDNF present, partially, or completely absent. The results revealed that VM tissue cultured in the absence of GDNF did not exhibit any significant differences in migration of astrocytes or dopaminergic nerve fiber outgrowth neither after 7 DIV nor after 21 DIV, when compared with tissue cultured with GDNF present. Migration of astrocytes and dopaminergic nerve fiber outgrowth reached longer distances when tissue was left to develop for 21 DIV in comparison with 7 DIV. In order to study the long-term effects of GDNF, mouse fetal dopaminergic tissue was transplanted into the ventricles of adult mice and evaluated after 6 months. No surviving dopamine neurons were present in the absence of GDNF. In contrast dopamine neurons developed with GDNF did survive, indicating that GDNF is an essential neurotrophic factor when it comes to long-term dopamine cell survival. More cases have to be assessed in the future in order to strengthen the findings. Thus, transplanted dopamine neurons will be assessed after 3 and 12 months in order to map out when dopamine neurons deprived of GDNF undergo degeneration.
27

Modulation de l’expression du transporteur vésiculaire du glutamate : implication dans la plasticité des neurones dopaminergiques

Dal Bo, Grégory 07 1900 (has links)
De nombreuses études ont établi que la majorité des neurones libèrent plus qu’une substance chimique. Il est bien connu que les neurones peuvent co-exprimer et co-libérer des neuropeptides en plus de leur neurotransmetteur, mais des évidences de la co-libération de deux petits neurotransmetteurs à action rapide se sont accumulées récemment. Des enregistrements électrophysiologiques ont aussi montré que des neurones sérotoninergiques et dopaminergiques isolés peuvent libérer du glutamate quand ils sont placés en culture. De plus, la présence de glutamate et de glutaminase a été détectée dans des neurones sérotoninergiques, dopaminergiques et noradrénergiques par immunomarquage sur des tranches de cerveau. Malheureusement, en considérant le rôle métabolique du glutamate, sa détection immunologique n’est pas suffisante pour assurer le phénotype glutamatergique d’un neurone. Récemment, la découverte de trois transporteurs vésiculaires du glutamate (VGLUT1-3) a grandement facilité l’identification des neurones glutamatergiques. Ces transporteurs sont nécessaires pour la libération de glutamate et constituent les premiers marqueurs morphologiques du phénotype glutamatergique. Il a été démontré que des neurones noradrénergiques expriment VGLUT2 et que des neurones sérotoninergiques expriment VGLUT3. Mais aucune évidence d’expression d’un des sous-types de VGLUT n’a été reportée pour les neurones dopaminergiques. Le but de notre travail était d’identifier quel sous-type de VGLUT est exprimé par les neurones dopaminergiques mésencéphaliques, et de déterminer si le phénotype glutamatergique de ces neurones peut être modulé dans des conditions particulières. Premièrement, nous avons utilisé des microcultures pour isoler les neurones dopaminergiques et des doubles marquages immunocytochimiques pour observer l’expression de VGLUT dans les neurones positifs pour la tyrosine hydroxylase (TH). Nous avons montré que la majorité (80%) des neurones TH+ isolés exprime spécifiquement VGLUT2. Cette expression est précoce au cours du développement in vitro et limitée aux projections axonales des neurones dopaminergiques. Toutefois, cette forte expression in vitro contraste avec la non-détection de ce transporteur dans les rats adultes in vivo. Nous avons décidé ensuite de regarder si l’expression de VGLUT2 pouvait être régulée pendant le développement cérébral de jeunes rats et sous des conditions traumatiques, par double hybridation in situ. Entre 14 et 16 jours embryonnaires, les marquages de VGLUT2 et de TH montraient une superposition significative qui n’était pas retrouvée à des stades ultérieurs. Dans le mésencéphale de jeunes rats postnataux, nous avons détecté l’ARNm de VGLUT2 dans environs 1-2% des neurones exprimant l’ARNm de TH dans la substance noire et l’aire tegmentaire ventrale (ATV). Pour explorer la régulation de l’expression de VGLUT2 dans des conditions traumatiques, nous avons utilisé la 6-hydroxydopamine (6-OHDA) pour léser les neurones dopaminergiques dans les jeunes rats. Dix jours après la chirurgie, nous avons trouvé que 27% des neurones dopaminergiques survivants dans l’ATV exprimaient l’ARNm de VGLUT2 dans les rats 6-OHDA. Finalement, nous avons observé la colocalisation de la protéine VGLUT2 dans les terminaisons TH positives par microscopie électronique. Dans les rats normaux, la protéine VGLUT2 est retrouvée dans 28% des terminaisons axonales TH dans le noyau accumbens. Dans les rats lésés à la 6-OHDA, nous avons observé une diminution considérable des terminaisons TH positives, et une augmentation dans la proportion (37%) des terminaisons dopaminergiques présentant du VGLUT2. Nos résultats suggèrent que le phénotype glutamatergique des neurones dopaminergiques est régulé au cours du développement, peut être réactivé dans des états pathologiques, et que ces neurones peuvent libérer du glutamate dans conditions spécifiques. / Numerous studies have established that the majority of neurons release more than one chemical substance. It is well known that neurons can co-express and co-release neuropeptides in addition to their neurotransmitter, but evidence of co-release of two small and fast-acting neurotransmitters has been accumulated recently. Electrophysiological recordings have also shown that isolated serotonine and dopamine neurons can release glutamate as a co-transmitter when they are placed in culture. Furthermore, the presence of glutamate and glutaminase has been detected in serotonine, dopamine and noradrenaline neurons by immunolabelling in brain slices. Unfortunately, considering the metabolic role of glutamate, its immunodetection is not sufficient to assert the glutamatergic phenotype of a neuron. Recently, the discovery of three vesicular glutamate transporters (VGLUT1-3) has greatly facilitated the identification of glutamate neurons. These transporters are necessary for the glutamate release by neurons and constitute the first molecular markers of a glutamatergic phenotype. Interestingly, it was demonstrated that some noradrenaline neurons express VGLUT2 and that some serotonin neurons express VGLUT3. But no evidence for expression of any VGLUT subtypes was initially reported for dopamine neurons. The goal of our work was to identify which VGLUT subtype is expressed by mesencephalic dopamine neurons, and to determine if the glutamatergic phenotype of these neurons can be modulated under specific conditions. First, we used microcultures to isolate dopamine neurons and double immunocytochemistry to visualize VGLUT expression in tyrosine hydroxylase (TH) positive neurons. We showed that the majority (80%) of isolated TH+ neurons express specifically VGLUT2. This expression occurred early during in vitro development and was limited to axonal projections of dopamine neurons. However, this strong expression in vitro contrasted with the lack of detection of this transporter in adult rats in vivo. We next decided to investigate if VGLUT2 expression could be regulated during brain development of young rats and under traumatic conditions, using double in situ hybridization. At embryonic days 14 to 16, VGLUT2 and TH labelling displayed significant overlap which was no longer found at later stages. In postnatal mesencephalon of young rats, we detected VGLUT2 mRNA in approximately 1-2% of neurons expressing TH mRNA in the substantia nigra and in ventral tegmental area (VTA). To explore the regulation of VGLUT2 expression under traumatic condition, we used 6-hydroxydopamine (6-OHDA) to damage dopamine neurons in young rats. Ten days post-surgery, we found that 27% of surviving dopamine neurons in the VTA expressed VGLUT2 mRNA in 6-OHDA animals. Finally, we observed the colocalisation of VGLUT2 protein in TH positive terminals by electron microscopy. In normal rats, VGLUT2 protein was found in 28% of TH positive axon terminals in nucleus accumbens. In 6 OHDA-lesioned rats, we observed a considerable reduction of TH positive terminals, and an increase in the proportion (37%) of dopamine terminals displaying VGLUT2. Our results suggest that the glutamatergic phenotype of dopamine neurons is developmentally regulated, can be reactivated under pathological states, and that these neurons are able to release glutamate under specific conditions.
28

Nuclear receptor and Wnt function in developing dopaminergic neurons /

Sousa, Kyle Matthew, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
29

On transplantation of fetal ventral mesencephalon with focus on dopaminergic nerve fiber formation /

Törnqvist, Nina, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 5 uppsatser.
30

From dopamine nerve fiber formation to astrocytes

Marschinke, Franziska, January 2009 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2009. / Härtill 4 uppsatser.

Page generated in 0.0485 seconds