1 |
Characterization of the in vitro growth and differentiation capabilities of human adipose-derived mesenchymal progenitor cellsSkritakis, Pantos Angelo 14 June 2019 (has links)
BACKGROUND: Human mesenchymal progenitor cells are multipotent cells that can be harvested from various adult and fetal tissues. They exhibit the potential to differentiate into several cell lineages, most notably osteogenic, chondrogenic, and adipogenic lineages. Conditions such as osteoporosis, metabolic disease, and arthritis are examples of dysfunction of tissues formed by the mesenchyme. The inability of these conditions to be healed by the body’s own mechanisms has raised considerable interest in the potential of using mesenchymal progenitor cells as a therapeutic intervention. This concept opens the possibility of harvesting mesenchymal progenitor cells from an individual, growing them into the desired tissue, and implanting them back into the individual. Treatment of this nature is much less invasive than current methods, overcomes rejection by the immune system, and could potentially demonstrate better outcomes in individuals suffering from degenerative disease of the mesenchyme.
AIMS/OBJECTIVES: The aims of this study were to determine and to characterize the differentiation of human adipose-derived mesenchymal progenitor cells into osteocytes, chondrocytes, and adipocytes. The differentiation capacity of the mesenchymal progenitor cells was evaluated through cell staining, immunofluorescence, and RNA sequencing.
METHODS: Subcutaneous adipose tissue was collected from patients undergoing elective panniculectomies. The abdominal panniculus was liposuctioned, and small explants of fat were embedded in Matrigel. Mesenchymal progenitor cells were extracted from the explants and plated for differentiation into osteogenic, chondrogenic, and adipogenic lineages. Control cells were grown in parallel in basal media to confirm differentiation. Dye staining for differentiation was performed with Alizarin Red S, Alcian Blue, and Oil Red O, and immunofluorescence staining was performed to indicate lineage-specific markers for differentiation. RNA sequencing was also completed on the different cell lineages.
RESULTS: Human adipose-derived mesenchymal progenitor cells displayed the capacity to differentiate into osteogenic, chondrogenic, and adipogenic lineages as evidenced by dye staining. Osteogenic differentiation was confirmed with Alizarin Red S staining of calcium deposits in the differentiated cells, whereas staining in the control resulted in no calcium deposits. Alcian Blue staining confirmed chondrogenic differentiation as glycoproteins secreted by the differentiated cells were evident and different in morphology compared with the control cells. Oil Red O staining indicated adipogenic differentiation by showing lipid droplets in the differentiated cells and no lipid droplets in the control. RNA sequencing provided support that lineage differentiation was successful. Immunofluorescence staining further proved that differentiated cells expressed lineage-specific proteins and demonstrated morphological differences.
CONCLUSIONS: This study demonstrates that mesenchymal progenitor cells harvested from human adipose tissue have the potential to differentiate into adipogenic, chondrogenic, and osteogenic cell lineages when induced with differentiation media. The differentiation of these cells can be assessed with dye staining, RNA sequencing, and immunofluorescence staining methods. Further studies should be done to investigate the potential of mesenchymal progenitor cells for therapeutic interventions in the treatment of various illnesses related to the mesenchyme.
|
2 |
Oscillatory Compressive Loading Effects On Mesenchymal Progenitor Cells Undergoing Chondrogenic Differentiation In Hydrogel SuspensionCase, Natasha D. 15 April 2005 (has links)
Articular cartilage functions to maintain joint mobility. The loss of healthy, functional articular cartilage due to osteoarthritis or injury can severely compromise quality of life. To address this issue, cartilage tissue engineering approaches are currently in development. Bone marrow-derived mesenchymal progenitor cells (MPCs) hold much promise as an alternative cell source for cartilage tissue engineering. While previous studies have established that MPCs from humans and multiple other species undergo in vitro chondrogenic differentiation, additional research is needed to define conditions that will enhance MPC differentiation, increase matrix production by differentiating cultures, and support development of functional tissue-engineered cartilage constructs. Mechanical loading may be an important factor regulating chondrogenic differentiation of MPCs and cartilage matrix formation by chondrogenic MPCs. This thesis work evaluated the influence of oscillatory unconfined compressive mechanical loading on in vitro MPC chondrogenic activity and biosynthesis within hydrogel suspension. Loading was conducted using MPCs cultured in media supplements supporting chondrogenic differentiation. Possible interactions between the number of days in chondrogenic media preceding loading initiation and the ability of the MPC culture to respond to mechanical stimulation were explored in two different loading studies. The first loading study investigated the effects of 3 hour periods of daily oscillatory mechanical stimulation on subsequent chondrogenic activity, where chondrogenic activity represented an assessment of cartilage matrix production by differentiating MPCs. This study found that oscillatory compression of MPCs initiated during the first seven days of culture did not enhance chondrogenic activity above the level supported by media supplements alone. The second loading study evaluated changes in biosynthesis during a single 20 hour period of oscillatory mechanical stimulation to assess mechanoresponsiveness of the MPC cultures. This study found that MPCs modulated proteoglycan and protein synthesis in a culture time-dependent and frequency-dependent manner upon application of oscillatory compression. Together the two loading studies provide an assessment of dynamic compressive mechanical loading influences on MPC cultures undergoing chondrogenic differentiation. The information gained through in vitro studies of differentiating MPC cultures will increase basic knowledge about progenitor cells and may also prove valuable in guiding the future development of cartilage tissue engineering approaches.
|
3 |
Cell therapy for cardiac tissue repair by circulting stem cells/Thérapie cellulaire de réparation tissulaire cardiaque par cellules souches circulantesDelgaudine, Marie 13 December 2010 (has links)
Le traitement de pathologies cardiaques ischémiques est limité par labsence de capacité régénérative du myocarde. Plusieurs études ont suggéré le potentiel de régénération du myocarde des cellules souches hématopoïétiques (CSH), mésenchymateuses (CSM) et des cellules progénitrices endothéliales (CPE). Une des stratégies envisageables en thérapie cellulaire est la mobilisation des cellules souches adultes de moelle osseuse (MO) dans le sang périphérique (SP) afin quelles puissent participer aux phénomènes de réparation tissulaire cardiaque. Le G-CSF est une cytokine puissante dont il a été démontré quelle pouvait améliorer la fonction et la perfusion cardiaque après un infarctus du myocarde, non seulement en mobilisant les cellules souches de la MO, mais également, en exerçant des effets cardioprotecteurs directs. Toutefois, des études complémentaires sont requises afin de clarifier lintérêt dun traitement complémentaire par du G-CSF chez les patients souffrant dinfarctus aigu du myocarde.
Lobjectif du travail est dévaluer plus précisément la capacité du G-CSF à mobiliser les CSH, les CSM et les CPE et dexaminer la contribution de ces cellules aux phénomènes de réparation tissulaire cardiaque après infarctus du myocarde.
Evaluation de la taille de linfarctus chez la souris par µSpect
Les modèles murins sont fréquemment utilisés pour étudier les mécanismes physiopathologiques cardiaques et tester les nouvelles stratégies thérapeutiques ; toutefois, lévaluation de la fonction cardiaque reste plus difficile daccès que chez les gros animaux. Cest la raison pour laquelle nous avons mis au point un modèle dinfarctus du myocarde (IM) par occlusion de lartère coronaire chez la souris, mais également les techniques nécessaires à lexploration de la perfusion et de la fonction cardiaque.
Afin de suivre lévolution des paramètres hémodynamiques cardiaques fins dans notre modèle dIM, nous avons adapté les techniques déchocardiographie et de sonde à conductance pour leur usage chez la souris. Nous avons ensuite démontré que la technique du µSpect est réalisable chez la souris et permet une détermination précise de la taille de linfarctus. En effet, vu les très petites dimensions du cur de souris, nous avions besoin dune résolution spatiale élevée que nous offre le nouveau système de Spect (Linoview Spect) : celui-ci peut en effet différencier deux points éloignés de 0,35mm. Nous obtenons effectivement des images de qualité équivalente à celles obtenues dans les études cliniques humaines. Nous avons validé cette technique en démontrant une excellente corrélation entre la taille de la zone ischémiée mesurée par µSpect et celle obtenue par les techniques histologiques de coloration au TTC ou trichrome. Nous avons également observé un faible taux de variation des valeurs inter-observation ou inter-observateur.
Mobilisation des cellules progénitrices par du G-CSF chez des animaux sains
Avant dévaluer la contribution du G-CSF aux phénomènes de réparation du tissu cardiaque lésé suite à une diminution de la perfusion, nous avons tout dabord étudié la capacité du G-CSF à mobiliser les cellules progénitrices hématopoïétiques (CPH), mésenchymateuses (CPM) et endothéliales (CPE). Nous voulions également vérifier limpact dun traitement par du G-CSF sur la perfusion ainsi que sur les performances du muscle cardiaque normal.
Nous avons démontré que l'administration de G-CSF chez les souris induit la mobilisation en périphérie de CPH, CPM et CPE, selon une cinétique spécifique à chaque type de cellules progénitrices. Cest après trois jours de traitement par du G-CSF que nous observons un nombre maximum des trois types de progéniteurs dans la SP ; ce serait donc le jour le plus approprié pour collecter par aphérèse une population enrichie en CPH, CPM et CPE. Toutefois, ce jour de collecte est à adapter spécifiquement à chaque type de cellules progénitrices.
Lanalyse échocardiographique et les mesures de pression-volume ont démontré que l'administration de G-CSF a un impact sur la fonction hémodynamique cardiaque. Ces données hémodynamiques ont révélé une relaxation anormale du cur, une compliance plus faible du ventricule gauche (VG) et une plus faible déformation du myocarde. Ces résultats pourraient suggérer que le G-CSF exerce un effet rigidifiant sur les parois ventriculaires. De plus, limagerie µSpect montre que la perfusion myocardique chez des souris saines est augmentée de façon importante, peu de temps après l'administration de G-CSF.
Mobilisation des cellules progénitrices après la survenue dun IM
Nous avons examiné si la survenue dun IM pouvait affecter le nombre de progéniteurs dans la moelle osseuse et le sang périphérique.
Nous avons observé que le nombre de CPH et de CFU-GM diminue aussi bien dans la moelle quen circulation, probablement en conséquence de l'inhibition post-inflammatoire de l'hématopoïèse. Les nombres de CPM et la CPE de la moelle ne varient pas, tandis que les CFU-F formées à partir des cellules médullaires diminuent. Ces trois paramètres augmentent considérablement dans le SP, indiquant une mobilisation importante de ces cellules progénitrices, en réponse à l'inflammation myocardique. Il apparaît clairement que les cellules progénitrices sont spécifiquement mobilisées suite à lIM et non pas chez les « sham-operated animals », alors que ces derniers subissent lentièreté de la chirurgie, à lexception de la ligature de lartère coronaire.
Mobilisation des cellules progénitrices par du G-CSF chez des animaux souffrant dIM
Nous avons étudié la contribution du G-CSF à la réparation du tissu cardiaque dans notre modèle murin de ligature de lartère coronaire. Limpact sur la survie, la fonction hémodynamique cardiaque et la perfusion, de 2 timings de traitement par du G-CSF a été étudiée par lusage complémentaire de léchographie, lévaluation hémodynamique à partir de boucle pression-volume et limagerie µSpect. Pour ce faire, les animaux ligaturés sont traités par du G-CSF, soit pendant 5 jours après linfarctus, soit pendant 5J avant et 5J après la chirurgie. Une semaine après linduction de lIM, les modifications fonctionnelles et structurelles induites par linfarctus et le traitement au G-CSF sont évaluées.
Les résultats que nous avons obtenus montrent que les CPM et les CPE sont davantage mobilisées dans le sang périphérique chez les souris souffrant dIM et traitées par du G-CSF que chez les animaux non traités. De plus, ladministration du G-CSF est nécessaire à la mobilisation des CPH après un IM aigu. Ladministration de G-CSF améliore la survie des animaux. En effet, la mortalité évolue de 30% chez les animaux non traités à 18% chez les animaux traités par du G-CSF dans les 5J qui suivent la ligature, et 0% de survie si les animaux sont traités 5J avant la ligature et 5J après. Le remodelage du VG est également amélioré par le G-CSF, comme le montre la diminution du poids du coeur et de la taille du VG. Nous avons alors évalué l'impact de l'administration de G-CSF sur le déficit de la perfusion et avons observé que ce paramètre, ainsi que la taille de linfarctus, sont sensiblement diminués après 10 jours de G-CSF. Nous obtenons également une évolution favorable de la perfusion entre les jours 1 et 7 chez les animaux recevant du G-CSF. Le nombre d'artérioles CD31 positives dans le coeur est également augmenté après un traitement par du G-CSF. Afin dévaluer plus précisément l'impact du traitement par du G-CSF sur la physiopathologie cardiaque chez des souris souffrant dIM, une évaluation hémodynamique de fonction cardiaque a été réalisée. Nous pouvons observer une amélioration de certains paramètres de la fonction cardiaque mais non de tous. En effet, 7 jours après la survenue de lIM, le débit cardiaque est presque totalement corrigé mais la fraction déjection du VG reste inchangée. Les paramètres de déformation du VG ne sont pas normalisés une semaine après linfarctus. Dun point de vue hémodynamique, la constante de relaxation augmente au-delà des valeurs normales après ladministration de G-CSF. De même, en fin de diastole, la pression augmente fortement, alors que le volume reste inchangé. Ces données indiquent à nouveau une altération de la relaxation du muscle cardiaque et une diminution de la compliance du VG chez les animaux traités par du G-CSF.
Ces résultats confirment le potentiel du G-CSF à mobiliser les cellules progénitrices dans le sang périphérique et leur possible contribution aux phénomènes de réparation cardiaque. Le développement dun traitement par du G-CSF dans les pathologies ischémiques cardiaques est un thérapeutique non invasive qui suscite un vif intérêt, mais qui nécessite des évaluations approfondies au travers détudes fondamentales et cliniques en double aveugle et randomisées. Il faut maintenant déterminer les mécanismes par lesquels le G-CSF exer
|
Page generated in 0.0728 seconds