• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 271
  • 83
  • 70
  • 16
  • 8
  • 7
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 543
  • 219
  • 178
  • 90
  • 74
  • 71
  • 59
  • 51
  • 51
  • 49
  • 45
  • 44
  • 44
  • 40
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A structural investigation into the complexity of mesoporous silica crystals : From a view of curvature and micellar interaction to quasicrystallinity

Xiao, Changhong January 2012 (has links)
Mesoporous silica crystals have a large variety of structures mainly due to the versatility of their structure template. The configuration and the chemical state of the templating micellar surfactants, together with the kinetic process of silica will determine the final outcome of the synthesis. Increasing the understanding of the complex formation processes involved will enable a possibilityto fine tune the material for specific uses, today focused into the fields of photoniccrystals, drug delivery, catalysis and separation technology. In this thesis emphasis is put on (1) increasing the understanding the formation mechanism yielding the different species of mesoporous silica crystals through an in depth study of quasicrystallinity (2) Characterization and description of the structural complexity through various characterization techniquesand also by studying the kinetic structural transformation phenomenon related to the minimal G- and D-surfaces. (3) The structural studies of the versatile surfactant liquid crystals for establishing a thermodynamically stable basis to evaluate the kinetic mesoporous silica growth processes. Furthermorethe thesis both enlightens the possibilities of and contributes to the developmentof electron microscopy characterization techniques. In these studies, electron microscopy is largely employed in the characterization to give a thorough picture of the mesoporous structures. This is combined with the sample preparation techniques cross-section polishing and ionslicing. Low voltage scanning electron microscopy is utilized for studying the surfaces and cross-sections of various materials at the limit of the resolution. Here, a deep understanding of the electron beam-material interaction is used for a better interpretation of the detected signals. Transmission electron microscopyis combined with electron crystallographic reconstruction to yield a three dimensional structural model. For determination of the quasicrystallinity level for a structure of dodecagonal tiling, revealed in the scope of this study,a phason strain analysis was made. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 7: Manuscript.</p>
42

Synthesis and characterization of ordered cage-like siliceous mesostructures with organic pendant and bridging groups

Grudzien, Rafal M. January 2008 (has links)
Thesis (Ph.D.)--Kent State University, 2008. / Title from PDF t.p. (viewed Dec. 17, 2009). Advisor: Mietek Jaroniec. Keywords: mesoporous, FDU-1, SBA-16, organosilicas, pendant groups, bridging groups, adsorption, isocyanurate, template removal, cage-like structures. Includes bibliographical references (p. 219-238).
43

Thin film nanoporous silica and graphene based biofuel cells (iBFCs) for low-power implantable medical device applications

Sharma, Tushar 23 February 2011 (has links)
This thesis describes the fabrication and characterization of an inorganic catalyst based glucose Biofuel cell using nanoporous (mesoporous) silica thin-film as a functional membrane. The desired use of nanoporous silica based biofuel cell is for a blood vessel implantable device. Blood vessel implantable Biofuel Cells (iBFCs) are subjected to higher glucose concentrations and blood flow rates. However, reduction in the implant thickness is critical for the intra-vascular implantable Biofuel cells. Platinum thin-film (thickness: 25 nm) deposited on Silicon substrate (500 [mu]m) served as the anode while Graphene pressed on Stainless steel mesh (175 [mu]m) was used as the cathode. Control experiments involved the use of surfactant-coated polypropylene membrane (50 [mu]m) and Activated Carbon (198 [mu]m) electrodes. Preliminary results show that nanoporous silica thin film (270 nm) is capable of replacing the conventional polymer based membranes with an increased power density output of as high as 10 [mu]W/cm2 under physiological conditions. in-vitro (5 [mu]W/cm2) and in-vivo (10 [mu]W/cm2) experiments demonstrate the potential of ultra-thin iBFCs towards powering future medical implants. / text
44

DEPOSITION AND CHARACTERIZATION OF MESOPOROUS SILICA COATINGS ON MAGNESIUM ALLOYS

Al Hegy, Afrah 17 March 2014 (has links)
In recent years, magnesium and magnesium alloys have received much attention as a new biomaterial in orthopaedic applications due to their biodegradability, biocompatibility, and their mechanical properties that are similar to natural bone tissue. The most common problem associated with magnesium as a biomaterial is low corrosion resistance in physiological solutions. This decreases the mechanical integrity of the implants in the early stages of healing and has a negative impact on the overall biocompatibility. The main goal of this study was to create a multi-layered coating consisting of a silica sol-gel under-layer to protect the substrate from corrosion in body fluids and a mesoporous silica top-layer to enhance the bioactivity of the coated implant material. The results indicate that the deposited multi-layered coating enhances both the bioactivity and the corrosion resistance of the material.
45

Selective hydrogenation of lignin-derived model compounds to produce nylon 6 precursors

Zhou, Xiaojuan 12 January 2015 (has links)
This study investigated the conversion of monomeric lignin fragments into cyclohexanols for use as a source of lignin-derived monomers for renewable Nylon 6 production. Lignin-derived monomeric phenolic species was transformed to their cyclohexanol analogs via selective catalytic hydrogenation. A fixed-bed flow reactor was used to evaluate the selective hydrogenation of individual model phenolic species (guaiacol, 4-methylguaiacol or diphenyl ether). The catalyst composition studied was Ni/SiO₂, which was previously shown to form cyclohexanol as an intermediate from phenol. A primary focus was on tuning the reaction conditions to form desired products, while avoiding the formation of bicyclic species which can be precursors to catalyst deactivation, or fully hydrogenated products of lower value. Reaction pathways of guaiacol, 4-methylguaiacol and diphenyl ether were studied. Major products obtained from guaiacol, 4-methylguaiacol and diphenyl ether reactions were 2-methoxycyclohexanone, 4-methylcyclohexanol and cyclohexanol, respectively. Spent catalyst was analyzed for extent of deactivation.
46

Amine-oxide adsorbents for post-combustion CO₂ capture

Bollini, Praveen P. 12 January 2015 (has links)
Amine functionalized silicas are promising chemisorbent materials for post-combustion CO₂ capture due to the high density of active sites per unit mass of adsorbent that can be obtained by tuning the synthesis protocol, thus resulting in high equilibrium CO₂ adsorption capacities. However, when compared to physisorbents, they have a few disadvantages. Firstly, oxidative degradation of the amine groups reduces the lifetime of these adsorbent materials. Furthermore, rapid heat release following the reaction between amines and CO₂ results in large local temperature spikes which may adversely affect adsorption equilibria and kinetics. Thirdly, there is a lack of fundamental understanding of CO₂-amine adsorption thermodynamics, which is key to scaling up these materials to an industrial-scale adsorption process. In this dissertation the qualitative and quantitative understanding of these three critical aspects of aminosilica adsorbents have been furthered so these materials can be better evaluated and further tuned as adsorbents for post-combustion CO₂ capture applications.
47

High nickel- and titania-containing mesoporous silicas : synthesis and characterisation

Wang, Wei January 2005 (has links)
In order to heighten the nickel content in mesoporous silica frameworks, a new direct synthesis method, called modified DS method, has been developed instead of the commonly used direct synthesis method. In addition, with the aim of incorporating a high amount of titania into SBA-15 mesoporous silica without blocking its mesopores, a multistep impregnation method, called the MSI method, has also been developed. By using the two developed methods, high nickel- and high titania-containing mesoporous silicas obtained werc synthesized. The nickel- and titania-containing mesoporous silicas were characterised by various techniques, i.e. XRD, TEM, EDX, SENI, N2-sorption, XPS, FTIR, UV-Vis-DRS, UV-VIS, TPR, and Raman spectroscopy. For nickel-containing mesoporous silicas synthesized by the modified DS method, satisfactory mesostructures were obtained and the nickel content was increased up to 14.7 wt.%. So far, no reports have been published on synthesis of mesoporous MCM-41-type silica with higher nickel content than 3.6 wt.% using DS method. Via our modified IDS method, high BET surface area (>840 rný/g) and pore volume (>-0.73 cm3/g were also achieved. Nickel was found to be incorporated into the silica frameworks. Formation of nickel phyllosilicates was also confirmed. After activation, mesostructurcs were still intact. Small nickel clusters embedded in the silica walls were found. A high amount of titania (up to 24.4 wt.%) was incorporated into the mesoporous SBA-15 silica via the multistep impregnation method. No damage to the SBA-15 silica mesostructures was caused. The existence of small titania nano-domins was confirmed to be present by Raman and UV-vis-DRS measurements. High dispersion of them was realized via this method according to the results of low-anglc XRD, TEM and N2-sorption measurements. Importantly, no blockage of mesopores was observed. Photo-activity tests showed the superiority of the materials synthesized by the MSI method to those by one-step impregnation method.
48

Synthesis, Modification, Characterization, and Application of MCM-41 for VOC Control.

Zhao, Xiusong Unknown Date (has links)
The recently discovered mesoporous molecular sieve MCM-41 was synthesized, modified, and characterized and proposed as an alternative adsorbent for VOC control. The synthesis conditions for pure-silica and aluminosilicate MCM-41 were optimized as follows: 4.5Na2O:30SiO2:5.2C16H33(CH3)3N + :2500H2O and 7.5Na2O:30SiO2:xAl2O3:7.2C16H33(CH3)3N + :3500H2O (x < 1), respectively, and at 373 K for 4 days. Our studies showed that MCM-41 is not stable in the presence of water vapor. For example, a hydrothermal treatment of MCM-41 at 723 K for 2 hour resulted in 50 % of structure collapses. Again, when a template-free MCM-41 sample was exposed to air with a relative humidity of 60 % for three months, almost total pore structure collapses were observed. Adsorption equilibrium results showed that MCM-41 has a narrow pore size distribution and exhibits extraordinary pore volume compared to the classical microporous adsorbents, such as molecular sieves and activated carbons. Despite the impressive adsorption capacities of this material, the Type IV isotherm behavior requires the VOCs, in the gas phase, to be at high partial pressure. This is not the case with most industrial VOC streams. A real VOC stream requires an adsorbent with not only a high adsorption capacity but also a high adsorption affinity at a low VOC concentration. To overcome the above mentioned two problems, both the surface chemistry and the pore-opening sizes of MCM-41 were modified. To modify the surface chemistry, one has to better understand the surface chemistry. Our pioneering study of the surface chemistry of MCM-41 using FTIR, 29 Si CP/MAS NMR, pyridine-TPD, and TGA demonstrated that three types of silanol groups, i.e. single, (SiO)3Si-OH, hydrogen-bonded, (SiO)3Si-OH---OH-Si(SiO)3 and geminal, (SiO)2Si(OH)2 are distributed over the surface of MCM-41. The number of silanol groups per unit nm 2 , aOH, varies between 2.5 and 3.0 depending on the template-removal method. To improve the hydrothermal stability and enhance the hydrophobicity, the surface chemistry of MCM-41 was modified by silylation. Though both the free and hydrogen-bonded SiOH groups were found to be the active sites for adsorption of pyridine with desorption energies of 91.4 and 52.2 kJ mol -1 , respectively, only the free SiOH groups are highly accessible to the silylating agent, chlorotrimethylsilane. The surface coverage of the modifying agent was found to has a linear relationship with the surface free silanol groups which can be controlled by different heating temperatures. Modification by silyaltion can significantly improve hydrophobicity and stability. Rehydration/dehydration experiments demonstrate that the surface-silylated MCM-41 is highly tolerable to water vapor due to the complete replacement of surface-hydrophilic silanols. A novel modification method, namely selective tailoring (ST), was developed to tailor the pore-opening sizes of MCM-41 (rather than the entire pores). The novelty is that only the pore mouths at both ends of a cylindrical pore of MCM-41 was modified by deposition of some alkoxides. By doing so, the types of adsorption isotherms of VOCs can be changed from Type IV to Type I while the pore volume can be significantly preserved. This is of course significance in VOC removal since the adsorption affinity has been drastically enhanced. Adsorption equilibria and kinetics for VOCs in the pore-opening-modified MCM-41 materials were measured, modeled and compared to that of activated carbons and hydrophobic molecular sieves. The pore-modified MCM-41 has a much higher adsorption capacity than that of the traditional microporous adsorbents such as activated carbons and molecular sieves. The adsorption equilibrium data fit the Langmuir-Uniform distribution (Unilan) models very well. Upon the equilibrium parameters being obtained and considering the pore structure of our pore-modified MCM-41 adsorbents, the kinetic data were further modeled using the literature-existed models recently developed by Do and coworkers, i.e. the constant surface diffusivity macropore, surface and micropore diffusion (CMSMD) model and the macropore and surface diffusion (MSD) model. Results demonstrated that the CMSMD model can predict our kinetic uptake curves reasonably fine. Some key kinetic parameters including pore and surface diffusivities, apparent diffusivity, activation energy for adsorption, and pore tortuosity factor can be readily obtained. The porosity of the MCM-41 materials were primarily evaluated using the traditional methods based on nitrogen adsorption/desorption data. Results indicated that the BJH method always underestimates the true pore diameter of MCM-41. An comparison plot (t-plot or as-plot) method was suggested and improved. Plotting of nitrogen adsorption data at 77 K versus the statistical film thickness reveals three distinct stages, with a characteristic of two points of inflection. The steep intermediate stage is caused by capillary condensation occurred in the highly uniform mesopores. From the slope of the section after condensation, the external surface area can be obtained. Therefore, the true surface area of the mesopores is readily calculated. The linear portion of the last section is extrapolated to the adsorption axis of the comparison plot, and this intercept is used to obtain the volume of the mesopores. From the surface area and pore volume, average mesopore diameter is calculated, and the value thus obtained is in good agreement with the pore dimension obtained from powder X-ray diffraction measurements. The principle of pore size calculation, the thickness of adsorbed nitrogen film, and the problems associated with the BJH method were discussed in detail. It has been found that at a given relative pressure, the smaller the pore radius, the thicker the adsorbed film. Thermodynamics analysis established that the stability of the adsorbed film is determined by interface curvature and the potential of interaction between adsorbate and adsorbent. A semi-empirical equation is proposed to describe the state of stable adsorbed films in cylindrical mesopores. It is also shown to be useful in calculations of pore size distributions of mesoporous solids. The desorption of four representative volatile organic compounds (VOCs), i.e. n-hexane, cyclohexane, benzene, and methanol from MCM-41 were also investigated and compared with the hydrophobic zeolite, silicalite-1, using the technique of temperature programmed desorption (TPD). The desorption energies of these organics to MCM-41 were evaluated and compared with the adsorption isosteric heats. The affinity of organics to MCM-41 and silicalite-1, which represents surface hydrophobicity/hydrophilicity were studied and discussed. Results showed that only one desorption peak can be found for all organics from MCM-41, different from that from the microporous adsorbents (activated carbons and hydrophobic molecular sieves). The activation energies for desorption of non-polar molecules are slightly higher than their latent heats of evaporation, whereas the activation energy for desorption of methanol is well above its latent heat of evaporation. These results are consistent with those derived from the adsorption isotherm measurements. The very high activation energy for the desorption of methanol is due to the hydrogen bonds between methanol molecules and silanol groups over MCM-41 surfaces. The affinity of volatile organics to MCM-41 are in the order of methanol > n-hexane > benzene > cyclohexane.
49

Mesoporous iron oxide energetic composites with slow burn rate, sustained pressure and reduced ESD sensitivity for propellant applications

Barizuddin, Syed. January 2006 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on May 7, 2009) Includes bibliographical references.
50

Synthesis and application of mesoporous and macroporous particles /

Newell, J. David. January 1900 (has links)
Thesis (Ph. D., Materials Science and Engineering)--University of Idaho, July 2008. / Major professor: Francis H. Froes. Includes bibliographical references. Also available online (PDF file) by subscription or by purchasing the individual file.

Page generated in 0.0312 seconds