51 |
Formules de courant dans les systèmes mésoscopiques / Current formulas in mesoscopic systemsGianesello, Céline 11 November 2011 (has links)
Le sujet principal de la thèse est le transport dans les systèmes mésoscopiques. Dans une première partie de lathèse, on étudie le cas d’un branchement adiabatique d’un biais de potentiel sur un système unidiensionnel sansrépartition initiale. On démontre que le courant complet est uniformément borné par rapport à la vitesse debranchement adiabatique, lorsque celle-ci tend vers zéro. On démontre l’existence de la partie linéaire de l’étatet du courant. La seconde partie de la thèse a donné lieu à a publication d’un article et elle consiste en l’étuded’un modèle discret, sans répartition initiale. On démontre que, dans ce système et après une perturbationélectrochimique, il existe un état stationnaire hors équilibre, et on retrouve la formule de Landauer-Büttikerpour ce modèle. La dernière partie de la thèse, qui a également donné lieu à un article, porte sur l’étude del’approximation des guides d’onde quantiques par des graphes quantiques. On s’intéresse à un guide d’ondelocalement torsadé. On étudie moins le Laplacien sur ce guide d’onde torsadé. Lorsque e diamètre du guidetend vers zéro et, simultanément, lorqsue le support de la courbure tend vers zéro, on démontre que le graphelimite est la ligne droite, et que l’opérateur limite est moins le Laplacien sur L2 (R) plus une condition deDirichlet à l’origine. Cette condition de Dirichlet est la conséquence des rétrécissements faits. En Annexe, ondonne des démonstrations et explications plus détaillées et utiles pour la compréhension de points clés de lathèse. / The main topic of the thesis is the transport in mesoscopic systems. In the first part of the work, we study thecase of a connection through an adiabatic potential on a one dimensional system without initial distribution, wesaid a “partition-free approach”. It is shown that the full current is uniformly bounded with respect to theadiabatic speed of connection, when it goes to zero. We prove the existence of the linear part of the state andcurrent. The second part of the thesis has led to publication of an article and deals with the study of a discretemodel without initial distribution. We prove that in this system and after an electrochemical disturbance thereexists a nonequilibrium steady state, and the Landauer-Büttiker formula is demonstrated for this model.The last part of the thesis, which also has led to an article, concerns the study of the approximation of quantumwaveguides by quantum graphs. We are interested in a waveguide locally twisted. We studyminus theLaplacian on this locally twisted waveguide. When the diameter of the guide goes to zero and simultaneouslywhen the support of the twisting goes to zero, we prove that the limit graph is the straight line, and the limitoperator is minus the Laplacian on the straight line plus a Dirichlet condition at the origin. The Dirichletcondition is the consequence of the shrinking done. In the appendix, we
|
52 |
A Smoothed Dissipative Particle Dynamics Methodology For Wall-Bounded DomainsYang, Jun 29 April 2013 (has links)
This work presents the mathematical and computational aspects of a smooth dissipative particle dynamics with dynamic virtual particle allocation method (SDPD-DV) for modeling and simulation of mesoscopic fluids in wall-bounded domains. The SDPD-DV method is realized with fluid particles, boundary particles and dynamically allocated virtual particles near solid boundaries. The physical domain in SDPD-DV contains external and internal solid boundaries, periodic inlets and outlets, and the fluid region. The solid boundaries of the domain are represented with boundary particles which have an assigned position, wall velocity, and temperature upon initialization. The fluid domain is discretized with fluid particles placed in a global index. The algorithm for nearest neighbor particle search is based on a combination of the linked-cell and Verlet-list approaches and utilizes large rectangular cells for computational efficiency. The density model of a fluid particle in the proximity of a solid boundary includes the contribution from the virtual particles in its truncated support domain. The thermodynamic properties of a virtual particle are identical to those of the corresponding fluid particle. A periodic boundary particle allocation method is used at periodic inlets and outlets. Models for the conservative and dissipative forces on a fluid particle in the proximity of a solid boundary are presented and include the contributions of the virtual particles in its truncated support domain. The integration of the fluid particle position and momentum equations is accomplished with an implementation of the velocity-Verlet algorithm. The integration is supplemented by a bounce-forward algorithm in cases where the virtual particle force model is not able to prevent particle penetration. The integration of the entropy equation is based on the Runge-Kutta scheme. In isothermal simulations, the pressure of a fluid particle is obtained by an artificial compressibility formulation for liquids and the ideal gas law for compressible fluids. Sampling methods used for particle properties and transport coefficients in SDPD-DV are presented. The self-diffusion coefficient is obtained by an implementation of the generalized Einstein and the Green-Kubo relations. Field properties are obtained by sampling SDPD-DV outputs on a post-processing grid that allows harnessing the particle information on desired spatio-temporal scales. The isothermal (without the entropy equation) SDPD-DV method is verified and validated with simulations in bounded and periodic domains that cover the hydrodynamic and mesoscopic regimes. Verification is achieved with SDPD-DV simulations of transient, Poiseuille, body-force driven flow of liquid water between plates separated. The velocity profiles from the SDPD-DV simulations are in very good agreement with analytical estimates and the field density fluctuation near solid boundaries is shown to be below 5%. Additional verification involves SDPD-DV simulations of transient, planar, Couette liquid water flow. The top plate is moving and separated from the bottom stationary plate. The numerical results are in very good agreement with the analytical solutions. Additional SDPD-DV verification is accomplished with the simulation of a body-force driven, low-Reynolds number flow of water over a cylinder of radius R=0.02m. The SDPD-DV field velocity and pressure are compared with those obtained by FLUENT. An extensive set of SDPD-DV simulations of liquid water and gaseous nitrogen in mesoscopic periodic domains is presented. For the SDPD-DV simulations of liquid water the mass of the fluid particles is varied between 1.24 and 3.3e-7 real molecular masses and their corresponding size is between 1.08 and 323 physical length scales. For SDPD-DV simulations of gaseous nitrogen the mass of the fluid particles is varied between 6.37e3and 6.37e6 real molecular masses and their corresponding size is between 2.2e2 and 2.2e3 physical length scales. The equilibrium states are obtained and show that the particle speeds scale inversely with particle mass (or size) and that the translational temperature is scale-free. The self-diffusion coefficient for liquid water is obtained through the mean-square displacement and the velocity auto-correlation methods for the range of fluid particle masses (or sizes) considered. Various analytical expressions for the self-diffusivity of the SDPD fluid are developed in analogy to the real fluid. The numerical results are in very good agreement with the SDPD-fluid analytical expressions. The numerical self-diffusivity is shown to be scale dependent. For fluid particles approaching asymptotically the mass of the real particle the self-diffusivity is shown to approach the experimental value. The Schmidt numbers obtained from the SDPD-DV simulations are within the range expected for liquid water. The SDPD-DV method (with entropy) is verified and validated with simulations with an extensive set of simulations of gaseous nitrogen in mesoscopic, periodic domains in equilibrium. The simulations of N2(g) are performed in rectangular domains. The self-diffusion coefficient for N2(g) at equilibrium states is obtained through the mean-square displacement for the range of fluid particle masses (or sizes) considered. The numerical self-diffusion is shown to be scale dependent. The simulations show that self-diffusion decreases with increasing mass ratio. For a given mass ratio, increasing the smoothing length, increases the self-diffusion coefficient. The shear viscosity obtained from SDPD-DV is shown to be scale free and in good agreement with the real value. We examine also the effects of timestep in SDPD-DV simulations by examining thermodynamic parameters at equilibrium. These results show that the time step can lead to a significant error depending on the fluid particle mass and smoothing length. Fluctuations in thermodynamic variables obtained from SDPD-DV are compared with analytical estimates. Additional verification involves SDPD-DV simulations of steady planar thermal Couette flow of N2(g). The top plate at temperature T1 =330K is moving at Vxw =30m/s and is separated by 10-4 m from the bottom stationary plate at T2=300K. The SDPD-DV velocity and temperature fields are in excellent agreement with those obtained by FLUENT.
|
53 |
Geometric phase and quantum transport in mesoscopic systemsZhu, Shiliang. January 2001 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 86-94).
|
54 |
Dynamics of quantum control in cold-atom systemsRoy, Analabha, 1978- 16 October 2012 (has links)
The dynamics of mesoscopic two-boson systems that model an interacting pair of ultracold alkali atoms in the presence of electromagnetic potentials are considered. The translational degrees of freedom of such a system can be described by a simple reduced atom Hamiltonian. Introducing time modulations in the laser fields causes parametric variations of the Hamiltonian's Floquet eigenvalue spectrum. Broken symmetries cause level repulsion and avoided crossings in this spectrum that are quantum manifestations of the chaos in the underlying classical dynamics of the systems. We investigate the effects of this phenomenon in the coherent control of excitations in these systems. These systems can be coherently excited from their ground states to higher energy states via a Stimulated Raman Adiabatic Passage (STIRAP). The presence of avoided crossings alter the outcome of STIRAP. First, the classical dynamics of such two-boson systems in double wells is described and manifestations of the same to the quantum mechanical system are discussed. Second, the quantum dynamics of coherent control in the manner discussed above is detailed for a select choice(s) of system parameters. Finally, the same chaos-assisted adiabatic passage is demonstrated for optical lattice systems based on experiments on the same done with noninteracting atoms. / text
|
55 |
Geometric phase and quantum transport in mesoscopic systems朱詩亮, Zhu, Shiliang. January 2001 (has links)
published_or_final_version / abstract / toc / Physics / Doctoral / Doctor of Philosophy
|
56 |
Transport properties of hybrid mesoscopic systemsLui, Chi-keung, Arthur., 呂智強. January 2004 (has links)
published_or_final_version / abstract / toc / Physics / Master / Master of Philosophy
|
57 |
Quantum transport in mesoscopic normal and superconducting systems朱建新, Zhu, Jianxin. January 1997 (has links)
The Best PhD Thesis in the Faculties of Dentistry, Engineering, Medicine and Science (University of Hong Kong), Li Ka Shing Prize,1995-1997 / published_or_final_version / Physics / Doctoral / Doctor of Philosophy
|
58 |
A superconducting investigation of nanoscale mechanics in niobium quantum point contactsDonehoo, Brandon 30 June 2008 (has links)
Research into molecular electronics has exploded in recent years due to a proliferation of new and exciting techniques for producing atomic level structures (e-beam lithography, self-assembled monolayers, etc.); coupling these techniques with the ability to accurately manipulate atomic systems (such as with Scanning Tunneling Microscopes (STM), Atomic Force Microscopes (AFM), or Mechanically Controllable Break Junctions (MCBJ)) opens the possibility to create novel quantum coherent devices for both engineering applications, as well as research into fundamental physics. Along these lines, presented here is a series of experiments on superconducting point contacts which were aimed at understanding the dynamics of coupling superconducting effects to the mechanical degrees of freedom of a nanowire. In addition, another series of experiments presented here explore the nature of charge transport at high biases in superconducting point contacts. Specifically, an investigation of point contacts at high voltage biases revealed a suppression of one component of the total current, which is explained through a phenomenological model.
|
59 |
Electron transport through domain walls in ferromagnetic nanowires /Falloon, Peter E. January 2006 (has links)
Thesis (Ph.D.)--University of Western Australia, 2006.
|
60 |
Mesoscopic effects in ferromagnetic materialsLiu, Xiya January 2008 (has links)
Thesis (Ph.D.)--Physics, Georgia Institute of Technology, 2008. / Committee Chair: Davidovic, Dragomir; Committee Member: Citrin, David; Committee Member: Kindermann, Markus; Committee Member: Marchenkov, Alexei; Committee Member: Riedo, Elisa
|
Page generated in 0.0273 seconds