• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biomechanics and Metabolic Costs of Overground and Treadmill Walking in Healthy Adults and in Stroke Subjects

PARVATANENI, KRISHNAJI 27 August 2009 (has links)
Background: Though numerous studies have compared overground and treadmill walking there still exists a significant debate about whether the two modes of walking are equivalent. The present study provides a comprehensive evaluation of overground and treadmill walking at matched speeds and increasing treadmill speeds. Walking performance was compared in healthy adults, in people with stroke and between the groups. This is important to know because any differences may have implications for gait training in both groups. Methods: Ten healthy adults (50-73 years) and ten subjects with stroke (54-80 years) walked at their self-selected speed overground which was matched on a treadmill. Temporal parameters, angular kinematics and vertical ground reaction forces were recorded during walking once subjects were in steady state as determined from their heart rate and oxygen uptake, both of which were also recorded. Belt speed was then increased 10% and 20% above matched speed and steady state recordings obtained. Speed related adjustments were also evaluated and compared between the two groups of subjects. Results: For healthy adults, step, stride, and joint angular kinematics were similar for both modes of walking. Small reductions in double support time and decreased push-off force were evident on the treadmill. For subjects with stroke, step, stride, and stance times were longer when walking overground but the degree of symmetry was comparable for both surfaces. Kinematic data revealed interlimb asymmetry was more pronounced for all lower limb joint excursions during overground walking and vertical forces were higher. In comparison to healthy adults, stroke subjects walked with lower cadence, shorter strides, lower stance time, and smaller lower limb joint excursions than their healthy counterparts. When compared with overground walking the metabolic requirements of treadmill walking for healthy adults and subjects with stroke however were about higher by 23% and 15% respectively. All temporal-distance parameters, hip joint excursion, F1 and F2 forces and metabolic costs showed main effects of speed. An interaction between speed and group indicated that oxygen consumption increased at a greater rate in stroke than healthy subjects. Conclusions: The findings suggest that, although overground and treadmill gait patterns are similar for each group of subjects, people with stroke adopt a more symmetrical kinematic walking pattern on the treadmill that is maintained at faster belt speeds. Although there are differences in gait patterns between healthy and stroke subjects, both groups respond to the challenge of increased walking speed in the same way. One important difference is the abnormal elevation of energy demands associated with treadmill walking at faster speeds in stroke. Clinically, this warrants consideration as it may lead to premature fatigue and undesirable cardiorespiratory challenge in this group of individuals. / Thesis (Ph.D, Rehabilitation Science) -- Queen's University, 2009-08-27 06:41:19.999
2

Voltage-gated K<sup>+</sup> channels in <em>Drosophila</em> photoreceptors:biophysical study of neural coding

Vähäsöyrinki, M. (Mikko) 01 December 2004 (has links)
Abstract The activity of neurons is critically dependent upon the suite of voltage-dependent ion channels expressed in their membranes. In particular, voltage-gated K+ channels are extremely diverse in their function, contributing to the regulation of distinct aspects of neuronal activity by shaping the voltage responses. In this study the role of K+ channels in neural coding is investigated in Drosophila photoreceptors by using biophysical models with parameters derived from the electrophysiological experiments. Due to their biophysical properties, the Shaker channels attenuate the fast transients and amplify the slower signal components, enabling photoreceptors to use their voltage range more effectively. Slow delayed rectifier channels, shown to be encoded by the Shab gene, activate at high light intensities, thereby attenuating the light-induced depolarization and preventing response saturation. Activation of Shab channels also reduces the membrane time constant making it possible to encode faster events. Interactions between the voltage-gated K+ channels and the currents generated by the light induced conductance (LIC) were investigated during naturalistic stimulation in wild type and Shaker mutant photoreceptors. It is shown that in addition to eliminating the Shaker current, the mutation increased the Shab current and affected the current flowing through the LIC. Part of these changes could be attributed to direct feedback from the Shaker channels via the membrane potential. However, it is suggested that also other changes may occur in the LIC due to mutation in K+ channels, possibly during photoreceptor development. Comparison of the Shaker and Shab mutant photoreceptors with the wild type revealed that a concurrent decrease in the steady-state input resistance followed from deletion of the voltage-gated K+ channels. This allowed partial compensation of the compression and saturation caused by the loss of Shaker channels and it maintained the characteristics of the light-voltage relationship in Shab mutant photoreceptors. However, wild type properties were not fully restored in either mutant. Indeed, decreased input resistance results in reduced efficiency of neural processing, assessed by the metabolic cost of information. Results of this study demonstrate the importance of the voltage-gated K+ channels for neural coding precision and highlight the robustness of neuronal information processing gained through regulation of the electrical properties.
3

Relationship of Metabolic Costs of Aquatic Treadmill Versus Land Treadmill Running

Blackwell, Sarah Squires 01 May 2012 (has links)
Running injuries are common, usually causing athletes to cease or significantly reduce participation in a particular sport. The recent development of aquatic treadmills (ATM), an alternative to land treadmill (LTM) running, provides another option. This study sought to examine the metabolic (VO2) relationship between varying jet resistances and running speed on an ATM versus LTM. This was accomplished by developing two linear regression equations and a prediction equation. One linear regression represented the predicted VO2 from a given speed and jet resistance setting in the water, the other linear regression predicted VO2 on land from a given speed and the prediction equation was designed to match land speed to a VO2 score derived from ATM running conditions. This study examined experienced runners (N = 18). Each subject completed an initial VO2 peak test, three LTM trials, and 18 ATM trials. Each ATM trial consisted of running for three minutes at either a relatively slow, moderate, or somewhat fast speed while one of six ATM jet settings ranging from 0 to 100% jet capacity in 20% increments were assigned to the trial. Oxygen consumption (VO2) and heart rate (HR) were measured during each trial while ratings of perceived exertion (RPE) were solicited immediately following each trial. Resulting analysis produced an ATM linear regression for each jet resistance setting and a LTM linear regression equation of VO2 = 4.16 * speed + 7.39. A prediction equation for each jet resistance setting was then determined from the linear regression equations for both the ATM and LTM conditions. Results showed that at and between 0-40% jet resistances that there is not a marked difference in metabolic cost but from 40-100% jet resistances the VO2 is influenced more strongly. These results demonstrate that ATM metabolic costs are not only influenced by jet resistance settings but at jet resistances of 40% or greater provide an intensity of exercise that mimics running faster on LTM. This provides an added benefit for those individuals who may be limited due to acute overuse-type injuries or returning to full LTM activity following lower extremity surgery.
4

Modeling photosynthesis and related metabolic processes : from detailed examination to consideration of the metabolic context

Arnold, Anne January 2014 (has links)
Mathematical modeling of biological systems is a powerful tool to systematically investigate the functions of biological processes and their relationship with the environment. To obtain accurate and biologically interpretable predictions, a modeling framework has to be devised whose assumptions best approximate the examined scenario and which copes with the trade-off of complexity of the underlying mathematical description: with attention to detail or high coverage. Correspondingly, the system can be examined in detail on a smaller scale or in a simplified manner on a larger scale. In this thesis, the role of photosynthesis and its related biochemical processes in the context of plant metabolism was dissected by employing modeling approaches ranging from kinetic to stoichiometric models. The Calvin-Benson cycle, as primary pathway of carbon fixation in C3 plants, is the initial step for producing starch and sucrose, necessary for plant growth. Based on an integrative analysis for model ranking applied on the largest compendium of (kinetic) models for the Calvin-Benson cycle, those suitable for development of metabolic engineering strategies were identified. Driven by the question why starch rather than sucrose is the predominant transitory carbon storage in higher plants, the metabolic costs for their synthesis were examined. The incorporation of the maintenance costs for the involved enzymes provided a model-based support for the preference of starch as transitory carbon storage, by only exploiting the stoichiometry of synthesis pathways. Many photosynthetic organisms have to cope with processes which compete with carbon fixation, such as photorespiration whose impact on plant metabolism is still controversial. A systematic model-oriented review provided a detailed assessment for the role of this pathway in inhibiting the rate of carbon fixation, bridging carbon and nitrogen metabolism, shaping the C1 metabolism, and influencing redox signal transduction. The demand of understanding photosynthesis in its metabolic context calls for the examination of the related processes of the primary carbon metabolism. To this end, the Arabidopsis core model was assembled via a bottom-up approach. This large-scale model can be used to simulate photoautotrophic biomass production, as an indicator for plant growth, under so-called optimal, carbon-limiting and nitrogen-limiting growth conditions. Finally, the introduced model was employed to investigate the effects of the environment, in particular, nitrogen, carbon and energy sources, on the metabolic behavior. This resulted in a purely stoichiometry-based explanation for the experimental evidence for preferred simultaneous acquisition of nitrogen in both forms, as nitrate and ammonium, for optimal growth in various plant species. The findings presented in this thesis provide new insights into plant system's behavior, further support existing opinions for which mounting experimental evidences arise, and posit novel hypotheses for further directed large-scale experiments. / Mathematische Modellierung biologischer Systeme eröffnet die Möglichkeit systematisch die Funktionsweise biologischer Prozesse und ihrer Wechselwirkungen mit der Umgebung zu untersuchen. Um präzise und biologisch relevante Vorhersagen treffen zu können, muss eine Modellierungsstrategie konzipiert werden, deren Annahmen das untersuchte Szenario bestmöglichst widerspiegelt und die dem Trade-off der Komplexität der zugrunde liegenden mathematischen Beschreibung gerecht wird: Detailtreue gegenüber Größe. Dementsprechend kann das System detailliert, in kleinerem Umfang oder in vereinfachter Darstellung im größeren Maßstab untersucht werden. In dieser Arbeit wird mittels verschiedener Modellierungsansätze, wie kinetischen und stöchiometrischen Modellen, die Rolle der Photosynthese und damit zusammenhängender biochemischer Prozesse im Rahmen des Pflanzenstoffwechsels analysiert. Der Calvin-Benson-Zyklus, als primärer Stoffwechselweg der Kohlenstofffixierung in C3-Pflanzen, ist der erste Schritt der Stärke- und Saccharoseproduktion, welche maßgeblich für das Wachstum von Pflanzen sind. Basierend auf einer integrativen Analyse zur Modellklassifizierung wurden aus der größten bekannten Sammlung von (kinetischen) Modellen des Calvin-Benson-Zyklus diejenigen ermittelt, die für die Entwicklung von Metabolic-Engineering-Strategien geeignet sind. Angeregt von der Fragestellung warum Kohlenstoff transitorisch vorwiegend in Form von Stärke anstatt Saccharose gespeichert wird, wurden die metabolischen Kosten beider Syntheseprozesse genauer betrachtet. Die Einbeziehung der Bereitstellungskosten der beteiligten Enzyme stützt die Tatsache, dass bevorzugt Stärke als temporärer Kohlenstoffspeicher dient. Die entprechende Untersuchung erfolgte einzig auf Grundlage der Stöchiometrie der Synthesewege. In vielen photosynthetisch-aktiven Organismen findet zudem Photorespiration statt, die der Kohlenstofffixierung entgegenwirkt. Die genaue Bedeutung der Photorespiration für den Pflanzenmetabolismus ist noch umstritten. Eine detaillierte Einschätzung der Rolle dieses Stoffwechselweges bezüglich der Inhibierung der Kohlenstofffixierungsrate, der Verknüpfung von Kohlenstoff- und Stickstoffmetabolismus, der Ausprägung des C1-Stoffwechsels sowie die Einflussnahme auf die Signaltransduktion wurde in einer modell-basierten, kritischen Analyse vorgenommen. Um die Photosynthese in ihrem metabolischen Kontext verstehen zu können, ist die Betrachtung der angrenzenden Prozesse des primären Kohlenstoffmetabolismus unverzichtbar. Hierzu wurde in einem Bottom-up Ansatz das Arabidopsis core Modell entworfen, mittels dessen die Biomasseproduktion, als Indikator für Pflanzenwachtum, unter photoautotrophen Bedingungen simuliert werden kann. Neben sogenannten optimalen Wachstumsbedingungen kann dieses großangelegte Modell auch kohlenstoff- und stickstofflimitierende Umweltbedingungen simulieren. Abschließend wurde das vorgestellte Modell zur Untersuchung von Umwelteinflüssen auf das Stoffwechselverhalten herangezogen, im speziellen verschiedene Stickstoff-, Kohlenstoff- und Energiequellen. Diese auschließlich auf der Stöchiometrie basierende Analyse bietet eine Erklärung für die bevorzugte, gleichzeitige Aufnahme von Nitrat und Ammonium, wie sie in verschiedenen Spezies für optimales Wachstum experimentell beobachtet wurde. Die Resultate dieser Arbeit liefern neue Einsichten in das Verhalten von pflanzlichen Systemen, stützen existierende Ansichten, für die zunehmend experimentelle Hinweise vorhanden sind, und postulieren neue Hypothesen für weiterführende großangelegte Experimente.
5

Étude de la synthèse des furocoumarines chez le panais par des approches d'ingénierie métabolique et de multi-omique / Study of furocoumarin synthesis in parsnip using metabolic engineering and multi-omic approaches

Galati, Gianni 17 July 2019 (has links)
Les plantes sont soumises durant leur vie à de nombreux stress environnementaux. Face à ces contraintes, les végétaux ont développé au cours de l'évolution différentes stratégies. La plus emblématique est la mise en place du métabolisme spécialisé, représenté par une grande diversité chimique et fonctionnelle. Bien que ce métabolisme soit de plus en plus étudié ces dernières années, de nombreuses lacunes persistes à son propos, liées notamment (i) à la complexité des modifications métabolomiques engendrées par la perception de stress, (ii) aux coûts et avantages que ces métabolites imputent à la plante les accumulant, et (iii) aux voies métaboliques menant à cette diversité de composés. Pour appréhender ces différentes problématiques, nous avons adopté une stratégie combinant des approches de phytochimie, de biologie moléculaire et de génétique. Dans un premier temps, nous avons étudié les changements métaboliques globaux engendrés par l’application de deux stress environnementaux, l’ozone et la blessure mécanique, sur une plante modèle au laboratoire, le panais, en fonction du temps. Les résultats de ces travaux nous ont permis d’identifier 40 métabolites différentiellement accumulés dans ces conditions, dont certaines furocoumarines. Par la suite, nous avons focalisé notre étude sur ces molécules en évaluant leurs profils d’accumulation, en condition de stress par blessures mécaniques, par la biais d’analyses différentielles. A partir de ces données, nous avons initié la recherche et l'identification de gènes candidats potentiellement impliqués dans cette voie à partir de plusieurs banques transcriptomiques et génomiques de panais. La fonction des gènes sélectionnés a été évalué par des approches d'expression hétérologue dans la levure. En parallèle de ces travaux, nous avons développé une stratégie destinée à mieux comprendre le coût métabolique de la synthèse de métabolites spécialisés. Pour ce faire, nous avons adapté aux furocoumarines une technique de clonage multigénique permettant de transférer dans une plante, et en une seule opération, plusieurs gènes impliqués dans la même voie de biosynthèse. Cette méthode nous a permis d'initier la génération de lignées stables ayant intégré les deux premiers gènes de la voie. Ces plantes seront comparées à des plantes sauvages et permettront ainsi d’étudier les coûts métaboliques et physiologiques de l’introduction de cette nouvelle voie de biosynthèse ainsi que ses bénéfices en termes de défense de la plante. / Plants are subjected to many environmental stresses during their life. Faced with these constraints, plants have developed different strategies during their evolution. The most emblematic is the establishment of a specialized metabolism, represented by a great chemical and functional diversity. Although this metabolism has been studied more and more in recent years, many gaps remain, related in particular (i) to the complexity of the metabolomic changes generated by the perception of stress, (ii) to the costs and benefits that these metabolites impute to the producing plant, and (iii) to the metabolic pathways leading to the diversity of compounds. To cope with these different issues, we adopted a strategy combining approaches of phytochemistry, molecular biology and genetics. First, we studied global metabolic changes caused by the application of two environmental stresses, ozone and mechanical wounding, on parsnip. The obtained results allowed us to identify 40 metabolites differentially accumulated under these conditions, including some furocoumarins. Subsequently, we focused our study on these molecules by evaluating their accumulation profiles under mechanical wounding stress condition, using differential analyzes. From this data, we initiated the search and identification of candidate genes potentially involved in this pathway based on transcriptomic and genomic parsnip libraries analyses. The function of the selected genes was evaluated by heterologous expression approach in yeast. In parallel to this work, we have developed a strategy to better understand the metabolic cost of specialized metabolites synthesis. To do this, we have adapted a multigene cloning method to furocoumarines, allowing to transfer several genes involved in the same pathway in a plant, in a single operation. This method allowed us to initiate the generation of stable lines having integrated the first two genes of the pathway. These plants will be compared to wild plants and will thus allow to study the metabolic and physiological costs of the introduction of this new biosynthetic pathway and its benefits in terms of plant defense.

Page generated in 0.0812 seconds