Spelling suggestions: "subject:"metanproduktion"" "subject:"vätgasproduktion""
1 |
Biogaspotential vid samrötningav mikroalger och blandslam från Västerås kommunala reningsverk / Biogas potential of co-digestion with microalgae and mixed sewage sludge from the municipial wastewater treatment plant in VästeråsForkman, Tova January 2014 (has links)
Because of the increasing trends in energy consumption and increased environmental awareness, greater focus has been placed on improvement and development of renewable energy sources. An already proven and accepted method is biogas production from anaerobic digestion at municipal wastewater treatment plants. In the waste water treatment process solid material and dissolved pollutants are separated from the water, forming a sludge. The sludge is separated from the process and stabilized during anaerobic digestion or aerobic aeration. Most often, mesophilic anaerobic digestion is used. Because of degradation by microorganisms, biogas with a high content of methane is formed during the digestion. To optimize the process different studies with co-digestion with sludge and other substrate have been made. It has been showed, in earlier research studies, that co-digestion with microalgae and sewage sludge results in a synergistic effect with increased biogas production. As the microalgae are microorganisms which use photosynthesis they contain stored energy from sun light. The stored energy will be available when the microalgae are digested in mesophilic conditions. In contrast to other biomass suitable for co-digestion microalgae have the advantage of being able to grow in waste water and reduce the pollutants in the water phase. Cultivation of microalgae will therefore not compete with the cultivation of food production and at the same time has the possibility to decrease the electricity- and heat consumption at the wastewater treatment plants. The aim of this study was to investigate how a possible synergetic effect between microalgae and sewage sludge effects the biogas production and the process stability. The microalgae was cultivated in municipal waste water from the WWTP in Umeå (Sweden) and the sludge was collected from the WWTP in Västerås (Sweden). The fermenters used was of the type DOLLY© and the active volume was 5 dm3. The temperature in the fermenters was kept at 37 °C and the study was divided into two periods. During the first period the hydraulic retention time was 15 days and the organic loading rate 2.4 g VS dm-3 d-1. During the second period the hydraulicretention time was kept at 10 days and the organic loading rate was 3.5 g VS dm-3 d-1. The result showed an increase with 54.6 % in methane production per reduced VS in the fermenter with co-digestion compared to the fermenter where only sludge was digested. Period one showed the highest increase. The result also showed a good process stability for both fermenters during the whole experiment. This study shows that there are reasons for continued investigations about co-digestion with microalgae and sewage sludge for an increased biogas production. / På grund av ökande el- och värmeförbrukning och ökat miljöengagemang har större fokus lagts på förbättring och utveckling av förnyelsebara källor för el- och värmeproduktion. En redan beprövad och accepterad metod för framställning av förnyelsebar energi är från biogasproduktion vid kommunala reningsverk. Vid rening av avloppsvatten avskiljs fasta partiklar och lösta föroreningar och bildar ett slam som separeras från vattnet. Slammet kan sedan stabiliseras anaerobt genom rötning eller aerobt genom luftning. En ofta använd metod vid konventionella reningsverk är mesofil anaerob rötning. Vid rötningen bryts material ner av mikroorganismer och genererar biogas som framförallt innehåller metan och koldioxid. För att optimera en sådan process och därmed kunna utvinna mer gas har det tidigare undersökts hur samrötning med olika material påverkar biogasproduktionen. Det har visat sig i forskningsförsök att samrötning med mikroalger och orötat blandslam ger en synergieffekt och mer biogas produceras. Mikroalgerna innehåller lagrad energi från solljus, då de är fotosyntesiserande organismer. Den lagrade energin har visat sig bli tillgänglig vid mesofil anaerob nedbrytning. Till skillnad från annan biomassa som undersökts för samrötning kan mikroalgerna odlas på avloppsreningsverken och fungera som en del av reningsprocessen då mikroalgerna tar upp näringsämnen ur vattnet de växer i. På det sättet undviks konkurrens om odlingsmark för livsmedel och så blir reningsprocessen på avloppsreningsverken mer el- och värmeeffektiv. Syftet med studien var att undersöka om eventuell synergieffekt mellan mikroalgerna och slammet påverkar biogasproduktionen och processtabiliteten vid mesofil anaerob rötning. Mikroalgerna som användes var odlade på mekaniskt renat spillvatten från Umeås reningsverk och slammet som användes hämtades ifrån Västerås reningsverk. Rötkamrarna som användes var av modellen DOLLY© med en aktiv volym på 5 dm3. Temperaturen i rötkamrarna hölls kring 37°C och studien var uppdelad i två perioder. Under period ett var den hydrauliska uppehållstiden 15 dygn och den organiska belastningen 2,4 g VS dm-3 d-1, medan period två hade en hydraulisk uppehållstid på 10 dygn och en organisk belastning på 3,5 g VS dm-3 d-1. Resultaten visade att metangasproduktionen per tillförd mängd organiskt material var lägre vid samrötning jämfört med rötning av enbart slam. Metangasproduktionen per reducerad mängd organiskt material ökade med upp till 54,6 % vid samrötningen jämfört med rötning av enbart slam. Period ett gav upphov till den största ökningen. Processen hölls stabil även vid inblandning av mikroalger, under både period ett och två. Studien visar att det finns ett underlag för fortsatta studier kring samrötning av mikroalger och slam för en ökad biogasproduktion.
|
Page generated in 0.1229 seconds