Spelling suggestions: "subject:"meteorologia."" "subject:"meteorological.""
21 |
Wissenschaftliche Mitteilungen aus dem Institut für Meteorologie der Universität Leipzig18 October 2016 (has links) (PDF)
No description available.
|
22 |
Wissenschaftliche Mitteilungen aus dem Institut für Meteorologie der Universität Leipzig18 October 2016 (has links) (PDF)
No description available.
|
23 |
Wissenschaftliche Mitteilungen aus dem Institut für Meteorologie der Universität Leipzig19 October 2016 (has links) (PDF)
No description available.
|
24 |
Wissenschaftliche Mitteilungen aus dem Institut für Meteorologie der Universität Leipzig19 October 2016 (has links) (PDF)
No description available.
|
25 |
Meteorologische Arbeiten aus Leipzig21 October 2016 (has links)
Arbeiten aus dem Institut für Meteorologie der Universität Leipzig
|
26 |
Meteorologische Arbeiten ... und Jahresbericht ... des Instituts für Meteorologie der Universität Leipzig21 October 2016 (has links)
Arbeiten aus dem Institut für Meteorologie der Universität Leipzig
|
27 |
SOFOS - a new satellite-based operational fog observation schemeCermak, Jan. January 2007 (has links)
Zugl.: Marburg, University, Diss., 2006. / Zsfassung in dt. Sprache.
|
28 |
Stoffeinträge in ein Fichtenwaldökosystem durch Deposition luftgetragener Partikel und Nebeltröpfchen /Constantin, Jost. January 1993 (has links) (PDF)
Univ., Diss.--Göttingen, 1993. / Auch als: Berichte des Forschungszentrums Waldökosysteme : Reihe A ; 106.
|
29 |
Meteorologie für Piloten wie finde ich die Inhalte eines Fachgebiets, die für eine Anwendung außerhalb des Fachgebiets erforderlich sind? /Fischer, Burkhard. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Berlin.
|
30 |
On constraining estimates of climate sensitivity with present-day observations through model weightingKlocke, Daniel, Pincus, Robert, Quaas, Johannes 30 October 2015 (has links) (PDF)
The distribution of model-based estimates of equilibrium climate sensitivity has not changed substantially in more than 30 years. Efforts to narrow this distribution by weighting projections according to measures of
model fidelity have so far failed, largely because climate sensitivity is independent of current measures of skill in current ensembles of models. This work presents a cautionary example showing that measures of model
fidelity that are effective at narrowing the distribution of future projections (because they are systematically related to climate sensitivity in an ensemble of models) may be poor measures of the likelihood that a model will provide an accurate estimate of climate sensitivity (and thus degrade distributions of projections if they are used as weights). Furthermore, it appears unlikely that statistical tests alone can identify robust measures of likelihood. The conclusions are drawn from two ensembles: one obtained by perturbing parameters in a single
climate model and a second containing the majority of the world’s climate models. The simple ensemble reproduces many aspects of the multimodel ensemble, including the distributions of skill in reproducing the
present-day climatology of clouds and radiation, the distribution of climate sensitivity, and the dependence of climate sensitivity on certain cloud regimes. Weighting by error measures targeted on those regimes permits
the development of tighter relationships between climate sensitivity and model error and, hence, narrower distributions of climate sensitivity in the simple ensemble. These relationships, however, do not carry into the
multimodel ensemble. This suggests that model weighting based on statistical relationships alone is unfounded and perhaps that climate model errors are still large enough that model weighting is not sensible.
|
Page generated in 0.0626 seconds