Spelling suggestions: "subject:"telemetering""
21 |
Uma proposta de arquitetura extensível para micro medição em Smart AppliancesTorri, Lucas Bortolaso January 2012 (has links)
O sistema de energia atual passou por poucas alterações desde sua concepção original, há mais de 100 anos. No entanto, a crescente complexidade da infraestrutura e da demanda global por energia vem criando diversos desafios que a sua constituição original não previa, culminando em problemas como apagões e outras falhas no seu fornecimento. Além disso, nota-se nos últimos anos, principalmente nos países desenvolvidos, uma certa diversificação na matriz energética, incentivando a utilização de fontes de energia renováveis e distribuídas. Isto se deve não apenas ao potencial energético das, mas também visando uma menor utilização de combustíveis fósseis, devido tanto a volatilidade e tendência de alta dos preços do petróleo, mas também pela necessidade de contenção do volume de emissões de gases causadores do efeito estufa. Apesar desta defasagem do sistema de energia contemporâneo, avanços nas áreas de informática, eletrônica embarcada, além das tecnologias empregadas na construção de sensores e atuadores, têm possibilitado a criação de uma rede de energia moderna, automatizada e distribuída. Esta rede, conhecida como Mart Grid, traz novas perspectivas no gerenciamento e na operação dos sistemas de geração, transmissão e distribuição de energia elétrica, inserindo propostas que visam melhorar diversos fatores da rede de energia atual, aumentado sua eficiência, segurança e confiabilidade de transmissão, além da eliminação de obstáculos para a integração em larga escala de fontes de energia distribuídas e renováveis. Este novo paradigma é caracterizado por um fluxo bidirecional de eletricidade e de informações, afim de criar uma rede automatizada e distribuída de energia. Ele incorpora à grade os benefícios da computação distribuída e de comunicações para fornecer informações em tempo real e permitir o equilíbrio quase instantâneo da oferta e da procura dos bens energéticos. Dentro do contexto de Smart Grids, Smart Appliances são uma modernização dos aparelhos eletrodomésticos quanto a sua utilização de energia, de forma que estes sejam capazes de monitorar, proteger e ajustar automaticamente o seu funcionamento às necessidades do proprietário e a disponibilidade deste recurso. Ou seja, estes possuem não apenas características de inteligência, mas também a capacidade de utilizarem as informações disponibilizados no Smart Grid para adaptar seu funcionamento. Apesar do grande interesse despertado em torno destes conceitos, há ainda uma enorme carência de padrões e tecnologias que permitam a criação de tais aparelhos inteligentes inseridos nos ambientes domésticos e prediais. Este trabalho tem por objetivo estudar e conceituar o Smart Grid, pesquisando os grupos existentes que buscam uma padronização deste, bem como conceituar Smart Appliances, avaliando projetos e pesquisas existentes, e, principalmente, propondo uma arquitetura que permita a construção de tais dispositivos. Os requisitos necessários para a criação desta arquitetura são discutidos ao longo da dissertação, bem como as tecnologias necessárias e existentes para permitir sua proposta. Finalmente, o funcionamento bem sucedido, através de uma implementação da mesma, é demonstrado através de diferentes experimentos, avaliando como as características do Smart Grid podem ser utilizadas para criar aparelhos eletrodomésticos capazes de usarem as informações disponíveis para melhorar seu funcionamento. / Since its original conception, for over 100 years, the current energy system has experienced little changes. However, the increasing complexity of the infrastructure, together with the growing global demand for energy, have imposed many challenges that its original constitution did not foresee, which has resulted in problems such as blackouts along with other energy supply failures. Moreover, over the last few years, some diversification in energy generation has been seen, especially in developed countries, encouraging the use of distributed and renewable energy sources. Apart from the energetic potential offered by those sources, it aims to decrease the greenhouse gases emission volume, in addition to reduce dependency on fossil fuels, which tend to increase in price. Despite the lack of upgrades, improvements in the areas of computing, embedded electronics, and technologies employed in sensors and actuators assembly have enabled the creation of a modern automated and distributed power grid. This grid, better known as Smart Grid, enhances several factors of the current power network, bringing new perspectives in electricity management, operation, generation, transmission and distribution. That result in increased efficiency, transmission safety and reliability, additionally eliminating obstacles in large-scale integration of renewable and distributed energy sources. This new paradigm also features a bi-directional electricity and information flow, enabling an automated and distributed energy network that incorporates the grid benefits of distributed computing and communications to provide real-time information and allowing almost instantaneous supply and demand balance of energy goods. Within the context of Smart Grids, Smart Appliances proposes an extension of regular appliances with intelligence and self-awareness of their energy use, so that they are able to monitor, protect and automatically adjust its operation according to the owner's needs and availability of this resource. That is, besides of being smart, they feature ability to use the information available on the Smart Grid to adapt its running behavior. Even though the increased interest around these concepts, there is still a gap of standards and technologies enabling the creation and embedding of intelligent devices in residences and buildings. The present projects attempts to study and conceptualize Smart Grid, surveying existing standardization groups, as well as conceptualize Smart Appliances, evaluating existing projects and research, proposing an architecture allowing the building of such devices. The requirements for this architecture, together with the required and existing technologies to make the implementation feasible, are discussed throughout the project development. Finally, the architecture's successful functioning is demonstrated through an implementation of it, together with different experiments, relying on them to evaluate the Smart Grid characteristics and how appliances can improve their operation based on the information shared throughout the Smart Grid.
|
22 |
Vliv speciálních materiálů na vlastnosti měřících zařízení / Influence of special materials on the properties of measurement gaugesTáfl, Josef January 2011 (has links)
New materials used at construction gauge they are though expensive, but shall they meaningful influence over making and metrological characteristics. Work evaluation influence these material on increasing quality concrete gauge.
|
23 |
Exploring The Potential Of Combining Ramp Metering And Variable Speed Limit Strategies For Alleviating Real-time Crash Risk On Urban FreewaysHaleem, Kirolos Maged 01 January 2007 (has links)
Research recently conducted at the University of Central Florida involving crashes on Interstate-4 in Orlando, Florida has led to the creation of new statistical and neural networks models that are capable of determining the crash risk on the freeway (Abdel-Aty et al., 2004; 2005, Pande and Abdel-Aty, 2006). These models are able to calculate rear-end and lane-change crash risks along the freeway in real-time through the use of static information at various locations along the freeway as well as real-time traffic data obtained by loop detectors. Since these models use real-time traffic data, they are capable of calculating rear-end and lane-change crash risk values as the traffic flow conditions are changing on the freeway. The objective of this study is to examine the potential benefits of combining two ITS strategies (Ramp Metering and Variable Speed Limits strategies) for reducing the crash risk (both rear-end and lane-change crash risks) along the I-4 freeway. Following this aspect, a 36.25-mile section of I-4 running though Orlando, FL was simulated using the PARAMICS micro-simulation program. Gayah (2006) used the same network to examine the potential benefits of two ITS strategies separately (Route Diversion and Ramp Metering) for reducing the crash risk along the freeway by changing traffic flow parameters. Cunningham (2007) also used the same network to examine the potential benefits of implementing Variable Speed Limits strategy for reducing the crash risk along the freeway. Since the same network is used, the calibration and validation procedures used in this study are the same as these previous two studies. This study simulates three volume loading scenarios on the I-4 freeway. These are 60, 80 and 90 percent loading scenarios. From the final experimental design for the 60 % loading, it was concluded that implementing VSL strategy only was more beneficial to the network than either implementing Ramp Metering everywhere (through the whole network) in conjunction with VSL everywhere or implementing Ramp Metering downtown (in downtown areas only) in conjunction with VSL everywhere. This was concluded from the comparison of the results of this study with the results from Cunningham (2007). However, either implementing Ramp Metering everywhere or downtown in conjunction with VSL everywhere showed safety benefits across the simulated network as well as a reduction in the total travel time. The best case for implementing Ramp Metering everywhere in conjunction with VSL everywhere was using a homogeneous speed zone threshold of 2.5 mph, a speed change distance of half speed zone and a speed change time of 5 minutes in conjunction with a 60 seconds cycle length for the Zone algorithm, a critical occupancy of 0.17 and a 30 seconds cycle length for the ALINEA algorithm. And the best case for implementing Ramp Metering downtown in conjunction with VSL everywhere was using a homogeneous speed zone threshold of 2.5 mph, a speed change distance of half speed zone and a speed change time of 10 minutes in conjunction with a 60 seconds cycle length for the Zone algorithm, a critical occupancy of 0.17 and a 30 seconds cycle length for the ALINEA algorithm. For the 80 % loading, it was concluded that either implementing Ramp Metering everywhere in conjunction with VSL everywhere or implementing Ramp Metering downtown in conjunction with VSL everywhere was more beneficial to the network than implementing VSL strategy only. This was also concluded from the comparison of the results of this study with the results from Cunningham (2007). Moreover, it was concluded that implementing Ramp Metering everywhere in conjunction with VSL everywhere showed higher safety benefits across the simulated network than implementing Ramp Metering downtown in conjunction with VSL everywhere. Also, both of them increased the total travel time a bit, but this was deemed acceptable. Additionally, both of them had successive fluctuations and variations in the average lane-change crash risk vs. time step. The best case for implementing Ramp Metering everywhere in conjunction with VSL everywhere was using a homogeneous speed zone threshold of 5 mph, a speed change distance of half speed zone and a speed change time of 30 minutes in conjunction with a 60 seconds cycle length for the Zone algorithm, a critical occupancy of 0.17 and a 30 seconds cycle length for the ALINEA algorithm. And the best case for implementing Ramp Metering downtown in conjunction with VSL everywhere was using a homogeneous speed zone threshold of 5 mph, a speed change distance of half speed zone and a speed change time of 30 minutes in conjunction with a 60 seconds cycle length for the Zone algorithm, a critical occupancy of 0.17 and a 30 seconds cycle length for the ALINEA algorithm. Searching for the best way to implement both Ramp Metering and VSL strategies in conjunction with each other, an indepth investigation was conducted in order to remove the fluctuations and variations in the crash risk with time step (through the entire simulation period). The entire simulation period is 3 hours, and each time step is 5 minutes, so there are 36 time steps representing the entire simulation period. This indepth investigation led to the idea of not implementing VSL at consecutive zones (using either a gap of one zone or more). Then this idea was applied for the best case of implementing Ramp Metering and VSL everywhere at the 80 % loading, and the successive fluctuations and variations in the crash risk with time step were removed. Moreover, much better safety benefits were found. So, this confirms that this idea was very beneficial to the network. For the 90 % loading, it was concluded that implementing Ramp Metering strategy only (Zone algorithm in downtown areas, and ALINEA algorithm in non downtown areas) was more beneficial to the network than implementing Ramp Metering everywhere in conjunction with VSL everywhere. This was concluded from the comparison of the results of this study with the results from Gayah (2006). However, implementing Ramp Metering everywhere in conjunction with VSL everywhere showed safety benefits across the simulated network as well as a reduction in the total travel time. The best case was using a homogeneous speed zone threshold of 2.5 mph, a speed change distance of the entire speed zone and a speed change time of 20 minutes in conjunction with a 60 seconds cycle length for the Zone algorithm, a critical occupancy of 0.17 and a 30 seconds cycle length for the ALINEA algorithm. In summary, Ramp Metering was more beneficial at congested situations, while Variable Speed Limits were more beneficial at free-flow conditions. At conditions approaching congestion, the combination of Ramp Metering and Variable Speed Limits produced the best benefits. These results illustrate the significant potential of ITS strategies to improve the safety and efficiency of urban freeways.
|
24 |
Utility measurement requirements : SASOL 1 site as case study / Johannes Jacobus VosserVosser, Johannes Jacobus January 2014 (has links)
Clean water has become a scarce and pricey commodity. Companies, governments and the public are realising more and more the importance of efficient and effective water use and the conservation of South Africa’s natural water resources. Governments are implementing conservation and usage laws while companies are trying to get as much use out of their water while staying within the law. This dissertation focusses on the potable water measuring and billing practices taking place on the SASOL 1 site. A field study, interviews and questionnaires were used to gather the relevant data which was subsequently compiled into a Stakeholder Requirement Statement. The latter is a description of the ideal system that would meet all the requirements for measuring potable water and billing customers on the SASOL 1 site. / MIng (Development and Management Engineering), North-West University, Potchefstroom Campus, 2014
|
25 |
Utility measurement requirements : SASOL 1 site as case study / Johannes Jacobus VosserVosser, Johannes Jacobus January 2014 (has links)
Clean water has become a scarce and pricey commodity. Companies, governments and the public are realising more and more the importance of efficient and effective water use and the conservation of South Africa’s natural water resources. Governments are implementing conservation and usage laws while companies are trying to get as much use out of their water while staying within the law. This dissertation focusses on the potable water measuring and billing practices taking place on the SASOL 1 site. A field study, interviews and questionnaires were used to gather the relevant data which was subsequently compiled into a Stakeholder Requirement Statement. The latter is a description of the ideal system that would meet all the requirements for measuring potable water and billing customers on the SASOL 1 site. / MIng (Development and Management Engineering), North-West University, Potchefstroom Campus, 2014
|
26 |
Modiciency - Efficient industrial hydraulic drives through independent metering using optimal operating modesKolks, Giacomo, Weber, Jürgen 27 April 2016 (has links) (PDF)
Independent metering poses a possibility to improve energy efficiency of throttlecontrolled hydraulic single-rod cylinder drives. This paper deals with energetic potentials gained through variable circuitry that come along with independent metering. A method to assess energetic potentials is described, based on load specific, optimal operating modes. As a means of yielding maximum energy efficiency for a wide range of applications, a smooth mode switching algorithm that minimizes losses and allows good motion tracking is proposed. The mode switching algorithm is validated in simulation and on a test stand.
|
27 |
Novel System Architectures by Individual DrivesWeber, Jürgen, Beck, Benjamin, Fischer, Eric, Ivantysyn, Roman, Kolks, Giacomo, Kunkis, Markus, Lohse, Harald, Lübbert, Jan, Michel, Sebastian, Schneider, Markus, Shabi, Linart, Sitte, André, Weber, Juliane, Willkomm, Johannes 02 May 2016 (has links) (PDF)
Measures of individualization and integration offer a great potential for further development and optimization in hydraulic drive technology. Advantages are seen especially for energy efficiency and functionality. These potentials motivate current research activities for displacement controlled systems and for valve controlled structures. For the latter, the focus lies on strategies of independent metering. Furthermore, expected challenges for the future are discussed.
|
28 |
Brimming bubbles? On an Innovative Piston Design of Dosing PumpsMüller, Axel, Heck, Mike, Ohligschläger, Olaf, Weber, Jürgen, Petzold, Martin 02 May 2016 (has links) (PDF)
For delivery, dosing and pressure control of fluids in mobile and stationary applications electromagnetically operated piston pumps are an established solution. The volume per stroke is exactly defined by the geometry. Nevertheless cavitation, more likely with the new fuel blends containing a high proportion of ethanol /1/, deteriorates the dosing precision of the liquid portion. One important criterion of precise metering is the transport of the liquids through the reciprocating piston pump without transferring bubbles. Especially, pumping in the range of vapour pressure of gasoline fuels implies challenges for precision. The objective of this work is revealing potential sources of reduced cavitation by optimising the design. For doing so, optical investigations have been applied. In addition to this, cavitation can be diminished controlling the piston’s travel externally. The second important item covers pumping of degenerated fluids even without negative effects on the pump’s performance. Up to now, wide, inefficient gaps or high force surplus are necessary. A new helix-design /2/ has been investigated and built up in order to reduce the described effort. The effects coming with the helix allow a permanent rinsing of the stressed surfaces, leading to lubrication and lower temperature loads. The results are shown in simulation, fundamental tests and is validated in practical pump operation.
|
29 |
System for acquisition, processing and presentation of energy consumptionFernandes, António João Resende January 2009 (has links)
Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Telecomunicações). Faculdade de Engenharia. Universidade do Porto. 2009
|
30 |
TECHNO-ECONOMIC ANALYSIS OF A PHOTOVOLTAIC POWER PLANT SUPPLYING ELECTRICITY FOR A LARGE SCALE REVERSE OSMOSIS DESALINATION UNIT IN AGADIR, MOROCCOJustin CasimirCasimir, Justin January 2013 (has links)
Legislation about the water use in Morocco including the watering of green spaces is about to change. Indeed, the watering of green spaces will have to be made from waste water treatment plant. This report focuses on a golf course located in Agadir which is subject to the new regulation. The option studied through this paper is the desalination of salt water powered by solar energy. This paper focuses specifically on the generation of solar energy. The aim of the report is to compare the levelized cost of water express in €/m3 for three different alternatives: A) water from the drinking water plant; B) water from a reverse osmosis desalination plant driven by electricity from the national grid; C) water from a reverse osmosis desalination plant driven mainly by solar energy and some electricity from the national grid.The paper will first present the boundary conditions for the case study (part I), the technical analysis (part II-A & B) and then the economic analysis (part II-C). Part III presents the results, based on the simulation results from the software PVsyst, for both the technical and economic analysis and part IV explains the technical part in more detail.In the conclusion, the writer of the report would recommend to another in depth economic analysis in few years as the capital cost for the system with the reverse osmosis desalination plant and the photovoltaic plant is at the moment too high. However, regarding at the levelized cost of water, this case study become competitive with the other alternative. Moreover, looking at the environmental issues (water depletion, greenhouse gas emission) one could decide to take action and therefore take some economic risks.
|
Page generated in 0.3113 seconds