• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 744
  • 337
  • 81
  • 56
  • 23
  • 23
  • 23
  • 23
  • 23
  • 23
  • 20
  • 17
  • 16
  • 14
  • 10
  • Tagged with
  • 1574
  • 326
  • 303
  • 283
  • 182
  • 140
  • 126
  • 125
  • 122
  • 115
  • 109
  • 108
  • 106
  • 105
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

The photochemistry of polyhalomethanes in water and the water-catalyzed dehalogenation reactions of selected isopolyhalomethanes,halogenated methanols and halogenated formaldehydes

Guan, Xiangguo., 官向國. January 2006 (has links)
published_or_final_version / abstract / Chemistry / Doctoral / Doctor of Philosophy
212

An investigation into the catalytic combustion of methane for natural gas vehicles

Crittle, David John January 1999 (has links)
No description available.
213

Planar pellistors : an application of electrodeposited mesoporous palladium films for the detection of combustible gases

Guerin, Samuel January 1999 (has links)
No description available.
214

Novel anodes for internal reforming in solid oxide fuel cells

Weston, Michael John January 2001 (has links)
No description available.
215

Thermal conductivity of polyatomic gases

Jawad, Shadwan Hamid January 1999 (has links)
No description available.
216

Stability of catalytic plate reactors

Tomlinson, David January 1995 (has links)
No description available.
217

The catalytic membrane reactor for the conversion of methane to methanol and formaldehyde under mild conditions.

Modibedi, Remegia Mmalewane January 2005 (has links)
This thesis described the development of new catalytic system for the conversion of natural gas (methane) to liquid products such as methanol and formaldehyde. This technology can allow the exploitation of small and medium size gas fields without the need to build an expensive gas to liquid plants or long pipelines. The technology is based on a concept of non-separating membrane reactor where an inorganic membrane paper serves as a catalyst support through which a reaction mixture is flowing under mild conditions and short residence times.
218

Oxidative coupling of methane on samaria and on mixed oxide catalysts

Hamid, Hamzah b Abd January 1991 (has links)
No description available.
219

Modelling the effects of genetic line and feeding system on methane emissions from dairy systems

Bell, Matthew January 2011 (has links)
Dairy cattle make a significant contribution to global methane emissions. Milking cows in the UK make up about a fifth of the total cattle population, with Holstein-Friesian cows being the most common breed. Investigating ways to minimise methane, a potent greenhouse gas (GHG) produced by dairy cows from enteric fermentation and manure, has gained importance in recent years due its role in climate change. Currently, GHG emissions from UK dairy farming are predicted using the Intergovernmental Panel on Climate Change (IPCC) Tier II methodology. The IPCC Tier II methodology and statistical prediction equations from the literature were evaluated for their ability to reliably model methane output using data from the Langhill Holstein-Friesian experimental herd. The Langhill dairy herd is on a long-term breeding and feeding systems experiment, and cows are on average 88% North American Holstein genes. The production systems within the herd represent a range of dairy systems that may be found commercially. Therefore, production values were assumed to be representative of those that could be found in the commercial Holstein-Friesian population, so factors affecting system methane emissions and appropriate mitigation options could be investigated. Prediction equations using dry matter (DM) intake and gross energy intake as input values were the most appropriate equations for reliably estimating daily enteric methane output. However, if DM intake values are not available, the IPCC Tier II method was found to provide a suitable prediction of methane emissions over a cow‘s lactation and lifetime. This study found that GHG emissions from enteric fermentation and manure, expressed as carbon dioxide equivalents (CO2-eq.), account for about 66% of dairy system CO2-eq. emissions, with enteric methane output being the main contributor (34% of system CO2-eq. emissions). Breeding for increased kilograms of milk fat plus protein production was shown to help reduce dairy system methane emissions. Cows of predominantly North American Holstein genes in this study produced more milk when fed a diet with a low proportion of forage and had lower GHG emissions and land requirement per kilogram energy corrected milk than similar cows fed a diet with a higher proportion of forage. Strategies to mitigate GHG emissions (including methane) and the environmental impact of dairy systems should seek to select animals that better utilise their feed intake to meet their genetic potential for milk production.
220

Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons

Borchardt, Lars, Nickel, Winfried, Casco, Mirian, Senkovska, Irena, Bon, Volodymyr, Wallacher, Dirk, Grimm, Nico, Krause, Simon, Silvestre-Albero, Joaquín 05 April 2017 (has links) (PDF)
Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores.

Page generated in 0.049 seconds