• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Molecular dynamics simulation of electrolyte solution flow in nanochannels and Monte Carlo simulation of low density CH <sub>3</sub> Cl monolayer on graphite

Zhu, Wei 03 February 2004 (has links)
No description available.
22

Physiologically based pharmacokinetic modeling in risk assessment - Development of Bayesian population methods

Jonsson, Fredrik January 2001 (has links)
In risk assessment of risk chemicals, variability in susceptibility in the population is an important aspect. The health hazard of a pollutant is related to the internal exposure to the chemical, i.e. the target dose, rather than the external exposure. The target dose may be calculated by physiologically based pharmacokinetic (PBPK) modeling. Furthermore, variability in target dose may be estimated by introducing variability in the physiological, anatomical, and biochemical parameters of the model. Data on these toxicokinetic model parameters may be found in the scientific literature. Since the early seventies, a large number of experimental inhalation studies of the kinetics of several volatiles in human volunteers have been performed at the National Institute for Working Life in Solna. To this day, only very limited analyses of these extensive data have been performed. A Bayesian analysis makes it possible to merge a priori knowledge from the literature with the information in experimental data. If combined with population PBPK modeling, the Bayesian approach may yield posterior estimates of the toxicokinetic parameters for each subject, as well as for the population. One way of producing these estimates is by so-called Markov-chain Monte Carlo (MCMC) simulation. The aim of the thesis was to apply the MCMC technique on previously published experimental data. Another objective was to assess the reliability of PBPK models in general by the combination of the extensive data and Bayesian population techniques. The population kinetics of methyl chloride, dichloromethane, toluene and styrene were assessed. The calibrated model for dichloromethane was used to predict cancer risk in a simulated Swedish population. In some cases, the respiratory uptake of volatiles was found to be lower than predicted from reference values on alveolar ventilation. The perfusion of fat tissue was found to be a complex process that needs special attention in PBPK modeling. These results provide a significant contribution to the field of PBPK modeling of risk chemicals. Appropriate statistical treatment of uncertainty and variability may increase confidence in model results and ultimately contribute to an improved scientific basis for the estimation of occupational health risks.
23

Non-thermal atmospheric pressure plasma for remediation of volatile organic compounds

Abd Allah, Zaenab January 2012 (has links)
Non-thermal plasma generated in a dielectric barrier packed-bed reactor has been used for the remediation of chlorinated volatile organic compounds. Chlorinated VOCs are important air pollutant gases which affect both the environment and human health. This thesis uses non-thermal plasma generated in single and multiple packed-bed plasma reactors for the decomposition of dichloromethane (CH2Cl2, DCM) and methyl chloride (CH3Cl). The overall aim of this thesis is to optimize the removal efficiency of DCM and CH3Cl in air plasma by investigating the influence of key process parameters. This thesis starts by investigating the influence of process parameters such as oxygen concentration, initial VOC concentration, energy density, and plasma residence time and background gas on the removal efficiency of both DCM and CH3Cl. Results of these investigations showed maximum removal efficiency with the addition of 2 to 4 % oxygen to nitrogen plasma. Oxygen concentrations in excess of 4 % decreased the decomposition of chlorinated VOCs as a result of ozone and NOx formation. This was improved by adding an alkene, propylene (C3H6), to the gas stream. With propylene additives, the maximum remediation of DCM was achieved in air plasma. It is thought that adding propylene resulted in the generation of more active radicals that play an important role in the decomposition process of DCM as well as a further oxidation of NO to NO2. Results in the single bed also showed that increasing the residence time increased the removal efficiency of chlorinated VOCs in plasma. This was optimized by designing a multiple packed-bed reactor consisting of three packed-bed cells in series, giving a total residence time of 4.2 seconds in the plasma region of the reactor. This reactor was used for both the removal of DCM, and a mixture of DCM and C3H6 in a nitrogen-oxygen gas mixture. A maximum removal efficiency of about 85 % for DCM was achieved in air plasma with the use of three plasma cells and the addition of C3H6 to the gas stream. Nitrogen oxides are air pollutants which are formed as by-products during the decomposition of chlorinated VOCs in plasmas containing nitrogen and oxygen. Results illustrate that the addition of a mixture of DCM and C3H6 resulted in the formation of the lowest concentration of nitric oxide, whilst the total nitrogen oxides concentrations did not increase. A summary of the findings of this work is presented in chapter eight as well as further work. To conclude, the maximum removal efficiency of dichloromethane was achieved in air plasma with the addition of 1000 ppm of propylene and the use of three packed-bed plasma cells in series. The lowest concentration of nitric oxide was formed in this situation.
24

Estudo da síntese de dimetildiclorosilano a partir de cloreto de metila e silício. / Study of the synthesis of dimethyldichlorosilane from methyl chloride and silicon.

Poço, João Guilherme Rocha 22 March 2001 (has links)
No presente trabalho foi realizado um estudo de alguns aspectos da reação de obtenção de dimetildiclorosilano a partir da reação entre silícios grau químico (SiGQ) ou de elevada pureza (99,999%) e cloreto de metila catalisada por cobre e promotores em reator de leito fluidizado. Foram estudados os efeitos da temperatura sobre o processo de ativação e sobre a reação com o fim de obter um valor aproximado da energia aparente de ativação para cada uma dessas etapas; o efeito do tamanho médio das partículas de silício e do catalisador sobre os parâmetros de desempenho da reação e o de contaminantes usuais do SiGQ, a saber Ca, Fe e Al, sobre silício de elevada pureza (99,999%). Uma discussão sobre o efeito de compensação característico da reação direta foi realizada sendo proposta uma explicação da origem desse efeito, que aparentemente se deve ao caracter anisotrópico da reação, e uma explicação complementar com relação ao papel dos promotores na reação. Os resultados mostraram que a energia aparente de ativação obtida por meio dos experimentos realizados neste estudo encontram-se em valores próximos ao normalmente encontrado na literatura. Aparentemente existe uma variação da seletividade com a variação do tamanho de partícula tanto do silício quanto do catalisador, que se deve ao grau de cobertura da superfície do silício pelo catalisador. Observou-se ainda que os parâmetros de desempenho se correlacionam melhor com a área geométrica do que com a área específica medida pelo método de adsorsão de N2 (BET). Os elementos Ca, Al e Fe, na forma que foram adicionados, mostraram algum efeito sobre os parâmetros de desempenho da reação, porém verificou-se que o efeito das impurezas é maior se estas estiverem presentes originalmente no silício. / Some important aspects of dimethyldichlorosilane direct synthesis from methyl chloride and both chemical grade silicon and high purity silicon (99.999%) catalyzed by copper and promoters in a fluidized bed reactor was studied. The effects of temperature on the activation process and on the reaction were studied to obtain an estimate of the apparent activation energy for each process step. The influence of average particle diameter of silicon and of catalyst and the effect of Ca, Al and Fe additions in the catalyst system were also evaluated. A discussion about the so-called isokinetic compensation behavior which is observed in the direct synthesis is presented. The proposed explanation about the origin of this phenomena is based on the anisotropic character of the reaction. A complementary explanation about the mechanism of promoters action was also proposed. The obtained values of apparent activation energies are within the range reported in the literature. Selectivity and activity showed some variation with both catalyst and silicon particle sizes. This behavior was explained in terms of silicon particle coverage by the catalyst system. The performance parameters show better correlation with the geometric area measured by laser diffraction than with the BET area obtained by N2 adsorption. The promoters Ca, Fe and Al have shown effect over the reaction, however these effects were more proeminent if they are originally present in silicon structure.
25

Estudo da síntese de dimetildiclorosilano a partir de cloreto de metila e silício. / Study of the synthesis of dimethyldichlorosilane from methyl chloride and silicon.

João Guilherme Rocha Poço 22 March 2001 (has links)
No presente trabalho foi realizado um estudo de alguns aspectos da reação de obtenção de dimetildiclorosilano a partir da reação entre silícios grau químico (SiGQ) ou de elevada pureza (99,999%) e cloreto de metila catalisada por cobre e promotores em reator de leito fluidizado. Foram estudados os efeitos da temperatura sobre o processo de ativação e sobre a reação com o fim de obter um valor aproximado da energia aparente de ativação para cada uma dessas etapas; o efeito do tamanho médio das partículas de silício e do catalisador sobre os parâmetros de desempenho da reação e o de contaminantes usuais do SiGQ, a saber Ca, Fe e Al, sobre silício de elevada pureza (99,999%). Uma discussão sobre o efeito de compensação característico da reação direta foi realizada sendo proposta uma explicação da origem desse efeito, que aparentemente se deve ao caracter anisotrópico da reação, e uma explicação complementar com relação ao papel dos promotores na reação. Os resultados mostraram que a energia aparente de ativação obtida por meio dos experimentos realizados neste estudo encontram-se em valores próximos ao normalmente encontrado na literatura. Aparentemente existe uma variação da seletividade com a variação do tamanho de partícula tanto do silício quanto do catalisador, que se deve ao grau de cobertura da superfície do silício pelo catalisador. Observou-se ainda que os parâmetros de desempenho se correlacionam melhor com a área geométrica do que com a área específica medida pelo método de adsorsão de N2 (BET). Os elementos Ca, Al e Fe, na forma que foram adicionados, mostraram algum efeito sobre os parâmetros de desempenho da reação, porém verificou-se que o efeito das impurezas é maior se estas estiverem presentes originalmente no silício. / Some important aspects of dimethyldichlorosilane direct synthesis from methyl chloride and both chemical grade silicon and high purity silicon (99.999%) catalyzed by copper and promoters in a fluidized bed reactor was studied. The effects of temperature on the activation process and on the reaction were studied to obtain an estimate of the apparent activation energy for each process step. The influence of average particle diameter of silicon and of catalyst and the effect of Ca, Al and Fe additions in the catalyst system were also evaluated. A discussion about the so-called isokinetic compensation behavior which is observed in the direct synthesis is presented. The proposed explanation about the origin of this phenomena is based on the anisotropic character of the reaction. A complementary explanation about the mechanism of promoters action was also proposed. The obtained values of apparent activation energies are within the range reported in the literature. Selectivity and activity showed some variation with both catalyst and silicon particle sizes. This behavior was explained in terms of silicon particle coverage by the catalyst system. The performance parameters show better correlation with the geometric area measured by laser diffraction than with the BET area obtained by N2 adsorption. The promoters Ca, Fe and Al have shown effect over the reaction, however these effects were more proeminent if they are originally present in silicon structure.

Page generated in 0.0556 seconds