• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vibrational absorption, vibrational circular dichroism and theoretical studies of methyl lactate molecules in solution phase and in argon matrices

Liu, Yang Unknown Date
No description available.
2

Integrated Batch Reactive Distillation Column Configurations for Optimal Synthesis of Methyl Lactate

Aqar, D.Y., Rahmanian, Nejat, Mujtaba, Iqbal M. 16 July 2016 (has links)
Yes / Although batch reactive distillation process outperforms traditional reactor-distillation processes due to simultaneous reaction and separation of products for many reaction systems, synthesis of Methyl lactate (ML) through esterification of lactic acid (LA) with methanol in such process is very challenging due to difficulty of keeping the reactants together when one of the reactants (in this case methanol) has the lowest boiling point than the reaction products. To overcome this challenge, two novel reactive distillation column configurations are proposed in this work and are investigated in detail. These are: (1) integrated conventional batch distillation column (i-CBD) with recycled methanol and (2) integrated semi-batch and conventional batch distillation columns (i-SBD) with methanol recovery and recycle. Performances of each of these configurations are evaluated in terms of profitability for a defined separation task. In i-SBD column, an additional constraint is included to avoid overflow of the reboiler due to continuous feeding of methanol into the reboiler as the reboiler is initially charged to its maximum capacity. This study clearly indicates that both integrated column configurations outperform the traditional column configurations (batch or semi-batch) in terms of batch time, energy consumption, conversion of LA to ML, and the achievable profit.
3

Kinetics Of Methyl Lactate Formation Over The Ion Exchange Resin Catalysts

Akbelen Ozen, Serap 01 April 2004 (has links) (PDF)
iv The recovery of lactic acid from its dilute aqueous solutions is a major problem. The ester of lactic acid, namely, methyl lactate has a wide range of applications. The esterification of an aqueous solution of lactic acid with methanol is a reversible reaction. As excess of amount water is present in the reaction mixture, the conversion is greatly restricted by the chemical reaction equilibrium limitations. In this study the esterification kinetics of lactic acid with methanol both in the absence and presence of an ion exchange resin as a heterogeneous acid catalyst was investigated with isothermal batch experiments between 40 - 70 0 C and at atmospheric pressure. Self-polymerization of lactic acid was enlightened by considering the hydrolysis reaction of lactoyllactic acid at the reaction temperatures and at various initial concentrations. Both homogeneous and heterogeneous reaction rate constants were evaluated. Methyl lactate process development was also investigated. The process was based on the recovery of 10% lactic acid by reaction with methanol in a absorption column using ion-exchange resin Lewatit SPC-112 H+. The effect of various parameters including lactic acid concentration or reactant molar ratio, lactic acid feed flow rate, methanol and inert carrier rate on reactor performance were studied. The reaction of methyl lactate formation over the ion exchange resin catalyst was observed to be slower than the mass transfer rate whereas mass transfer of methanol in gas phase was the limiting step for methanol transfer to the liquid mixture. Mass transfer of water from liquid phase to the gas phase was controlled by the mass transfer resistance of liquid phase. Thus, it can be concluded that the counter-current gas-liquid reactors with acidic solid catalysts can be used as simultaneous reaction and separation equipment.
4

Methyl lactate synthesis using batch reactive distillation: Operational challenges and strategy for enhanced performance

Aqar, D.Y., Rahmanian, Nejat, Mujtaba, Iqbal M. 13 December 2015 (has links)
Yes / Batch reactive distillation is well known for improved conversion and separation of desired reaction products. However, for a number of reactions, the distillation can separate the reactants depending on their boiling points of them and thus not only reduces the benefit of the reactive distillation but also offers operational challenges for keeping the reactants together. Methyl lactate (ML) synthesis via the esterification of lactic acid (LA) with methanol in a reactive distillation falls into this category and perhaps that is why this process has not been explored in the past. The boiling points of the reactants (LA, methanol) are about 490 K and 337 K while those of the products (ML, water) are 417 K and 373 K respectively. Clearly in a conventional reactive distillation (batch or continuous) methanol will be separated from the LA and will reduce the conversion of LA to ML significantly. Here, first the limitations of the use of conventional batch distillation column (CBD) for the synthesis of ML is investigated in detail and a semi-batch reactive distillation (SBD) configuration is studied in detail where LA is the limiting reactant and methanol is continuously fed in excess in the reboiler allowing the reactants to be together for a longer period. However, this poses an operational challenge that the column has to be carefully controlled to avoid overflow of the reboiler at any time of the operation. In this work, the performance of SBD for the synthesis of ML is evaluated using model based optimization in which operational constraints are embedded. The results clearly demonstrate the viability of the system for the synthesis of ML.

Page generated in 0.0428 seconds