• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 555
  • 154
  • 138
  • 61
  • 36
  • 31
  • 22
  • 11
  • 11
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1222
  • 687
  • 276
  • 186
  • 183
  • 172
  • 155
  • 148
  • 123
  • 122
  • 111
  • 110
  • 106
  • 99
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Cytosine methylation, methyltransferases and flowering time in Arabidopsis thaliana

Genger, Ruth Kathleen, Ruth.Genger@csiro.au January 2000 (has links)
Environmental signals such as photoperiod and temperature provide plants with seasonal information, allowing them to time flowering to occur in favourable conditions. Most ecotypes of the model plant Arabidopsis thaliana flower earlier in long photoperiods and after prolonged exposure to cold (vernalization). The vernalized state is stable through mitosis, but is not transmitted to progeny, suggesting that the vernalization signal may be transmitted via a modification of DNA such as cytosine methylation. The role of methylation in the vernalization response is investigated in this thesis. ¶ Arabidopsis plants transformed with an antisense construct to the cytosine methyltransferase METI (AMT) showed significant decreases in methylation. AMT plants flowered significantly earlier than unvernalized wildtype plants, and the promotion of flowering correlated with the extent of demethylation. The flowering time of mutants with decreased DNA methylation (ddm1) was promoted only in growth conditions in which wildtype plants showed a vernalization response, suggesting that the early flowering response to demethylation operated specifically through the vernalization pathway. ¶ The AMT construct was crossed into two late flowering mutants that differed in vernalization responsiveness. Demethylation promoted flowering of the vernalization responsive mutant fca, but not of the fe mutant, which has only a slight vernalization response. This supports the hypothesis that demethylation is a step in the vernalization pathway. ¶ The role of gibberellic acid (GA) in the early flowering response to demethylation was investigated by observing the effect of the gai mutation, which disrupts the GA signal transduction pathway, on flowering time in plants with demethylated DNA. The presence of a single gai allele delayed flowering, suggesting that the early flowering response to demethylation requires a functional GA signal transduction pathway, and that demethylation increases GA levels or responses, directly or indirectly. ¶ In most transgenic lines, AMT-mediated demethylation did not fully substitute for vernalization. This indicates that part of the response is not affected by METI-mediated methylation, and may involve a second methyltransferase or a factor other than methylation. A second Arabidopsis methyltransferase, METIIa, was characterized and compared to METI. The two genes are very similar throughout the coding region, and share the location of their eleven introns, indicating that they diverged relatively recently. Both are transcribed in all tissues and at all developmental stages assayed, but the level of expression of METI is significantly higher than that of METIIa. The possible functions of METI, METIIa, and other Arabidopsis cytosine methyltransferase genes recently identified are discussed.
122

DNA methylation at the neocentromere

Wong, Nicholas Chau-Lun Unknown Date (has links) (PDF)
The Centromere is a vital chromosomal structure that ensures faithful segregation of replicated chromosomes to their respective daughter cells. With such an important structure, one would expect the underlying centromeric DNA sequence would be highly conserved across all species. It turns out that the underlying centromeric DNA sequences between species ranging from the yeast, fly, mouse to humans are in fact highly diverged suggesting a DNA sequence independent or an epigenetic mechanism of centromere formation. / Neocentromeres are centromeres that form de-novo at genomic locations that are devoid of highly repetitive a-satellite DNA sequences of which normal centromeres are usually comprised from. To date, the 10q25 neocentromere is the most well-characterised, fully functional human centromere that has been used previously to characterise the extent of a number of centromeric protein binding domains and characterise the properties of the underlying DNA sequence. Along with other factors, the existence of neocentromeres has given rise to a hypothesis where centromeres are defined by epigenetic or DNA sequence independent mechanisms. / The putative 10q25 neocentromere domain was recently redefined by high resolution mapping of Centromeric protein A (CENP-A) binding through a chromatin immunoprecipitation and array (CIA) analysis. The underlying DNA sequence was investigated to determine and confirm that the formation of the 10q25 neocentromere was through an epigenetic mechanism. Through a high-density restriction fragment length polymorphism (RFLP) analysis using overlapping PCR amplified DNA derived from genomic DNA representing the 10q25 region before and after neocentromere activation. No sequence polymorphisms, large insertions or deletions were detected and confirmed the epigenetic hypothesis of centromere formation. / DNA methylation is one of many epigenetic factors that are important for cellular differentiation, gene regulation and genomic imprinting. As the mechanisms and functions of DNA methylation have been well characterised, its role at the 10q25 neocentromere was investigated to try and identify the candidate epigenetic mechanism involved in the formation of centromeres. DNA methylation across the neocentromere was assessed using sodium bisulfite PCR and sequencing of selected CpG islands located across the 10q25 neocentromere. Overall, the methylation level of the selected CpG islands demonstrated no difference in DNA methylation before and after neocentromere activation. However, significant hypomethylation upon neocentromere formation was detected close to the protein-binding domain boundaries mapped previously suggesting that this may have a role in demarcating protein binding domains at the neocentromere. / Further analysis of DNA methylation investigated non-CpG island methylation at sites defined as CpG islets and CpG orphans. Interestingly, the DNA methylation level measured at selected CpG islets and CpG orphans across the 10q25 neocentromere were not completely hypermethylated as previously thought, but demonstrated variable methylation that became fully hypermethylated upon neocentromere activation in most sites investigated. These results suggested that a role for DNA methylation existed at the 10q25 neocentromere and that it occurred at sites devoid of CpG islands. / This study has found that DNA methylation at non-CpG island sites was variable contrary to popular belief and, was linked with neocentromere formation through the observation of increased DNA methylation at the 10q25 neocentromere. Inhibition of DNA methylation demonstrated increased neocentromere instability and a decrease in methylation of these CpG islets and CpG orphans confirming the importance of DNA methylation at neocentromeres. This study has characterised a new class of sequences that are involved in the maintenance of chromatin structure through DNA methylation at the 10q25 neocentromere.
123

Protein methylation at sites of blood vessel injury

Weber, Darin J. 12 August 1996 (has links)
Blood vessel injury was found to release intracellular pools of protein D-aspartyl/L-isoaspartyl carboxyl methyltransferase (PIMT) into the extracellular milieu, where it became trapped. Trapped PIMT was able to utilize radiolabeled S-adenosyl-L-methionine (AdoMet) introduced into the circulation to methylate blood vessel proteins containing altered aspartyl residues specifically at the site of injury. In vitro studies more fully characterized this endogenous PIMT activity in thoracic aorta and inferior vena cava. At least 50% of the PIMT activity released during injury, was resistant to non-ionic detergent extraction, suggesting that the enzyme activity can become trapped within or behind the extracellular matrix (ECM). Analysis of inferior vena cava, found that 90% of the altered aspartyl residues in blood vessels are inaccessible to methylation by intracellular PIMT under physiological conditions. Subfractionation of inferior vena cava on the basis of solubility found that at least 40% of the altered aspartyl containing proteins in blood vessels are insoluble in non-ionic detergent containing buffers and are highly resistant to extraction by protein denaturants. Analysis of peptides revealed that the majority of the altered aspartyl groups in blood vessels are located extracellularly. Digestion of these extracellular matrix proteins with cyanogen bromide (CNBr), followed by methylation with (PIMT), found that about 60% of the altered aspartyl residues in the ECM are solubilized by this treatment. The presence of hydroxyproline in amino acid hydrosolates of this fraction and acidic pH gel electrophoresis of methylated peptides, allowed the identification of collagen as the major PIMT substrate in the CNBr-soluble material. CNBr peptides derived from both type I and type III collagen were found to methylated. It is estimated that one centimeter of blood vessel contains on the order of 5 x 10����� altered aspartyl residues involving 1% to 5% of the total extracellular protein. / Graduation date: 1997
124

Effect of hemi-methylated CG dinucleotide on Z-DNA stability : crystallographic and solution studies

Bononi, Judy 05 October 1994 (has links)
Graduation date: 1995
125

Transcriptional regulation and chromatin remodeling mechanisms at PHO5

Carvin, Christopher Dumas 29 August 2005 (has links)
Regulation of gene expression is vital for proper growth and prevention of disease states. In eukaryotes this regulation occurs in the context of chromatin which creates an inherent barrier for the binding of trans-acting factors, such as transcription factors and RNA polymerase. This dissertation focuses on the role of transcriptional activators and chromatin remodeling coactivators in the regulation of the repressible acid phosphatase gene PHO5. Our studies show that histone methylation at lysine 4 of histone H3 is required for the full repression of PHO5and GAL1-10. We show that bromodomains, a domain conserved in chromatin remodeling coactivators, may function to stabilize binding. Finally, we present a strategy using DNA methyltransferases as in vivo probes to detect DNA-protein interactions and examine chromatin structure. We extend this strategy to zinc-finger proteins which can be engineered to bind to any desired DNA sequence as a means of targeting methylation with potential use in epigenetic silencing.
126

H3K36me3 in Muscle Differentiation: Regulation of Tissue-specific Gene Expression by H3K36-specific Histonemethyltransferases

Dhaliwal, Tarunpreet 19 December 2012 (has links)
The dynamic changes in chromatin play a significant role in lineage commitment and differentiation. These epigenetic modifications control gene expression through recruitment of transcription factors. While the active mark H3K4me3 is present around the transcription start site on the gene, the function of the H3K36me3 mark is unknown. A number of H3K36-specific histone methyltransferases (HMTs) have been identified, however the focus of this study is the HMT Hypb. To elucidate the role of H3K36me3 in mediating expression of developmentally-regulated loci, native chromatin immunoprecipitation (N-ChIP) was performed at a subset of genes. Upon differentiation, we observe that H3K36me3 becomes enriched at the 3’ end of several muscle-specific genes. To further investigate the role of H3K36me3 in myogenesis, a lentiviral-mediated knockdown of the H3K36 HMT Hypb was performed in muscle myoblasts using shRNA. Upon Hypb knockdown, we were surprised to observe enhanced myogenesis. N-ChIP was also performed on differentiated Hypb knockdown cell lines in order to look at H3K36me3 enrichment on genes involved in muscle differentiation. N-ChIP data show a drop in H3K36me3 enrichment levels on myogenin and Ckm genes. The possible occupancy of Hypb on the coding regions of muscle-specific genes was experimentally observed by cross-linked chromatin immunoprecipitation (X-ChIP) on differentiated C2C12 cells and subsequently confirmed by X-ChIP on knockdown lines where the occupancy was lost. A model is proposed that links the observed phenotype with H3K36me3.
127

DNA Methylation Changes at Promoters of Endothelial Cell-enriched Genes during in vitro Differentiation

Kop, Anna 12 December 2011 (has links)
This study examined DNA methylation patterns at promoters of endothelial cell (EC)-enriched genes during differentiation of mouse ES cells towards the EC. We have previously shown that eNOS, CD31, VE-cadherin and vWF, which have an EC-enriched pattern of gene expression are differentially methylated between EC and vascular smooth muscle cells. Given that differential promoter DNA methylation is functionally important we asked when these distinct patterns are established. Using the hanging drop method to differentiate ES cells, followed by FACS, we isolated early (EB-day4 VEGFR2-positive) and late (EB-day7 CD31-positive) endothelial progenitor cells. Though current paradigms suggest that lineage-restricted genes are methylated in ES cells, we show heterogeneous promoter DNA methylation. We show DNA demethylation at the CD31 promoter in EB-day 7 CD31-positive cells. In contrast, the eNOS promoter is still heavily methylated in EB-day 7 CD31 positive cells compared with murine EC where there is no DNA methylation.
128

Epigenetic Control of Gene Expression in the Placental Trophoblast

Thompson, Megan Elizabeth 16 August 2012 (has links)
This study examined the DNA methylation profile of endothelial nitric oxide synthase (eNOS) in the placental villous trophoblast in first, second trimester and healthy term placentas. Syncytiotrophoblast DNA revealed a heterogeneous methylation pattern in the first trimester eNOS proximal promoter and transitioned to a densely methylated pattern at term. Healthy, term syncytiotrophoblast and cytotrophoblast obtained through cytotrophoblast isolation technique provided purified cell samples for RNA and DNA extraction. Real-time PCR (rt-PCR) verified the presence and quantity of eNOS mRNA. In summary, the main findings of this thesis are heterogeneous methylation in first trimester compared to hypermethylation at term; greater eNOS expression and variable methylation in term syncytiotrophoblast compared to cytotrophoblast. A heterogeneous methylation pattern in eNOS has been identified in this study and recent stem cell studies in our lab, and we propose it represents plasticity in gene expression, particularly in early development.
129

DNA Methylation Changes at Promoters of Endothelial Cell-enriched Genes during in vitro Differentiation

Kop, Anna 12 December 2011 (has links)
This study examined DNA methylation patterns at promoters of endothelial cell (EC)-enriched genes during differentiation of mouse ES cells towards the EC. We have previously shown that eNOS, CD31, VE-cadherin and vWF, which have an EC-enriched pattern of gene expression are differentially methylated between EC and vascular smooth muscle cells. Given that differential promoter DNA methylation is functionally important we asked when these distinct patterns are established. Using the hanging drop method to differentiate ES cells, followed by FACS, we isolated early (EB-day4 VEGFR2-positive) and late (EB-day7 CD31-positive) endothelial progenitor cells. Though current paradigms suggest that lineage-restricted genes are methylated in ES cells, we show heterogeneous promoter DNA methylation. We show DNA demethylation at the CD31 promoter in EB-day 7 CD31-positive cells. In contrast, the eNOS promoter is still heavily methylated in EB-day 7 CD31 positive cells compared with murine EC where there is no DNA methylation.
130

Epigenetic Control of Gene Expression in the Placental Trophoblast

Thompson, Megan Elizabeth 16 August 2012 (has links)
This study examined the DNA methylation profile of endothelial nitric oxide synthase (eNOS) in the placental villous trophoblast in first, second trimester and healthy term placentas. Syncytiotrophoblast DNA revealed a heterogeneous methylation pattern in the first trimester eNOS proximal promoter and transitioned to a densely methylated pattern at term. Healthy, term syncytiotrophoblast and cytotrophoblast obtained through cytotrophoblast isolation technique provided purified cell samples for RNA and DNA extraction. Real-time PCR (rt-PCR) verified the presence and quantity of eNOS mRNA. In summary, the main findings of this thesis are heterogeneous methylation in first trimester compared to hypermethylation at term; greater eNOS expression and variable methylation in term syncytiotrophoblast compared to cytotrophoblast. A heterogeneous methylation pattern in eNOS has been identified in this study and recent stem cell studies in our lab, and we propose it represents plasticity in gene expression, particularly in early development.

Page generated in 0.0886 seconds