1 |
Les phénomènes lies aux polarisation et gain dans micro-lasers en polymère dopes par colorant organiqueGozhyk, Iryna 16 October 2012 (has links) (PDF)
La démonstration de la première diode laser organique reste un défi majeur en optoélectronique organique. Parmi les nombreuses problématiques à étudier, l'aspect " matériau " (gain et pertes) est capital. Par exemple, la limite théorique basse du seuil laser en pompage électrique pourrait être connue s'il existait une méthode d'estimation fiable du seuil laser en pompage optique. Dans cette thèse nous avons étudié le gain et la polarisation de lasers basés sur des couches minces de polymère dopées par des colorants organiques. L'originalité de ce travail repose sur l'étude des propriétés du matériau organique à travers l'analyse des caractéristiques de microlasers. Cela permet aussi de s'intéresser aux problématiques de couplage gain-mode et aux systèmes ouverts. Nous proposons une description quantitative du processus d'amplification dans les matériaux organiques. Une relation liant gain, pertes et seuil est établie dans le cas d'une cavité Fabry-Perot, ce qui permet par la suite l'étude de l'amplification optique et de l'extraction de la lumière dans les cavités diélectriques à travers la mesure précise du seuil laser. Nous avons exploré différentes formes de cavités, comme les carrés où la lumière est couplée vers l'extérieur par diffraction au niveau des coins. Nous avons démontré que l'anisotropie de fluorescence intrinsèque des molécules de colorant gouverne la polarisation de tels systèmes lasers. Nous avons développé à cette occasion un modèle original incluant la distribution non-isotrope des molécules dans le polymère. Nous avons aussi étudié le rôle de la géométrie de la cavité sur l'état de polarisation du laser, et différents moyens de contrôler cet état.
|
2 |
Réalisation d'un dispositif expérimental pour la détection d'atomes sur une puce opto-atomique et étude d'une micro-cavité optique.El Amili, Abdelkrim 22 January 2010 (has links) (PDF)
Cette thèse présente la réalisation d'un dispositif expérimental pour la détection d'atomes, sur une puce atomique, avec une micro-cavité optique. La puce atomique est un substrat sur lequel des fils et la cavité optique sont fabriqué par des techniques de lithographie. La puce permet de piéger, de manipuler et de transporter des atomes grâce aux potentiels magnétiques générés par les courants électriques qui traversent ces fils. La puce permettra à terme de transporter les atomes vers la microcavité optique où ils peuvent être en interaction forte avec la lumière de la cavité. Le résonateur est construit à partir d'un guide d'onde sur lequel des miroirs sont déposés aux extrémités. Une tranchée est creusée dans le guide d'onde pour que les atomes puissent interagir avec le champ électromagnétique. Ce manuscrit présente la fabrication et la caractérisation d'une telle cavité. Une étude théorique du résonateur a permis d'estimer la finesse et la figure de mérite du système atome-cavité. Les calculs montrent que la microcavité peut permettre dans certains cas de détecter des atomes uniques.
|
3 |
Étude de fonctions actives et/ou passives à base de<br />micro-résonateurs à modes de galerieArnaud, Carole 15 December 2004 (has links) (PDF)
Ces travaux de thèse portent sur l'étude de résonateurs cyclique (à symétrie de révolution) dans lesquels existent des modes confinés de très haute surtension, appelés « modes de galerie ». Dans ces modes, la lumières est guidée dans le diélectrique constituant le résonateur le long d'un cercle équatorial par une succession de réflexion totales internes à l'interface diélectrique/air et les résonances correspondent à une condition de retour en phase. Les résonances sont très fines ce qui permet d'envisager des applications aussi biens passives (filtrage, insertion/extraction) qu'active (laser faible seuil, fonction non-linéaire).<br />Ce manuscrit de thèse est constitué de deux parties distinctes :<br />La première partie, qui concerne les fonctions passives à base de micro-résonateur planaire, présente différents outils (numérique et analytique) qui permettent de modéliser le comportement de ces structures et démontre la complémentarité de ces outils.<br />La deuxième partie concerne les lasers micro-sphériques (dopés Erbium) et plus précisément le problème de l'interaction entre les modes d'une micro-sphère et un miroir métallique.
|
4 |
Nano-membranes à cristal photonique pour l'optomécanique / Optomechanic's photonic crystal nano-membranesMakles, Kevin 16 June 2015 (has links)
Dans ce manuscrit, nous présentons le développement d'un résonateur optimisé pour observer des effets quantiques du couplage entre un resonateur mécanique et le champ electromagnétique via la pression de radiation. Celui-ci doit combiner une réflectivité élevée, une faible masse, ainsi qu'un facteur de qualité mécanique élevé. Le résonateur consiste en une membrane suspendue de quelques centaines de nanomètres d’épaisseur, et de quelques dizaines de microns de côté, présentant une réflectivité importante grâce à l'utilisation de cristaux photoniques. Après une étude détaillée de la physique d'un cristal photonique en incidence normale, nous présentons les résultats expérimentaux, en bon accord avec des simulations optiques, notamment lorsque la membrane est utilisée comme miroir de fond d’une cavité Fabry-Perot. Dans un second point, nous passons en revue les mécanismes d'amortissement mécanique à l’œuvre dans les micro-résonateurs. Nous montrons ensuite comment l'introduction de contraintes peut améliorer leur facteur de qualité. Nous finissons la caractérisation mécanique par l'étude de non-linéarités apparaissant lors des grandes amplitudes de mouvement. Puis nous présentons le montage expérimental permettant l'observation du bruit thermique de ces resonateurs. Celui-ci a également permis d'obtenir des résultats préliminaires sur le refroidissement de leur bruit thermique par friction froide et par effet photothermique. Enfin, nous présentons le développement d’un système de couplage capacitif entre la membrane et un circuit électrique, constituant la première étape de la réalisation d’un transducteur optomécanique entre photons optiques et micro-ondes. / The field of optomechanic consists in studying the coupling induce by the radiation pressure between a mechanical resonator and a light field, it has expended over the last fifteen years. In this memoir we present the developpement of a resonator optimised to observe quantum effect of the optomechanical coupling. On the one hand, it has to combine a high reflectivity and a low mass to enhance its coupling with the light field. On the other hand it should exhibit high mechanical quality factor in order to minimize its interaction with the environment. This resonator is a suspended membrane, whose thickness is about hundreds of nanometers, and whose reflectivity is achieved thanks to a photonic crystal. After a study of the photonic crystal physic in normal incidence, we present the experimental results including those in the end mirror of a Fabry-Pérot cavity configuration, which are in good agreement with the optical simulations. In a second point, we list the dissipation mechanisms in micro-resonator. Then we show how the stress introduction in such resonators can improve the quality factor. We finish the mechanical characterisation by studying mechanical non-linearities which appears in the case of large amplitude of motion. Then we present the experimental set-up developed to observe the thermal noise of the resonators. We also obtain some preliminary results about the cooling of the thermal noise using active cooling and photothermal effect. Last we present the development of a capacitive coupling between the membrane and a electrical circuit. This device is the first step toward the realisation of an optomechanical transducer between optical and micro-wave photons.
|
5 |
Lasers à cascade quantique et leurs applications aux cristaux photoniquesBahriz, Michaël 14 May 2008 (has links) (PDF)
Le travail de thèse présenté dans ce manuscrit traite des lasers à cascade quantique à plasmons de surface dans la gamme spectrale du moyen-IR et de leurs applications aux cristaux photoniques moyen-IR et THz. Pour les grandes longueurs d'onde (λ > 10µm) la lumière est confinée au sein de la région active du laser grâce à une couche de métal déposée directement à la surface de la région active. Ces guides sont appelés guide à plasmons de surface. La faible épaisseur de ces guides est un atout majeur pour la fabrication de dispositifs à cristal photonique ou DFB (Distributed Feed Back). Ce manuscrit présente une étude complète de ces guides. Il démontre de manière expérimentale et théorique qu'il est possible d'améliorer les performances de ces guides en utilisant une couche d'argent à la place de l'or habituellement utilisé. Pour approfondir cette étude, une méthode originale basée sur les guides multisections et permettant de mesurer les pertes et le gain des guides à plasmons de surface a été soigneusement étudiée à l'aide de nombreuses expériences. La deuxième partie de ce manuscrit est consacrée à l'étude théorique du réseau nid d'abeille pour la fabrication de microcavité laser pour le moyen-IR et le THz. Cette étude est réalisée grâce à des simulations bidimensionnelles à partir d'un code utilisant la méthode des ondes planes et en trois dimensions grâce à un code utilisant la méthode FDTD (Finite-Difference Time-Domain). Lors de ces études, un phénomène nouveau a été mis en évidence sur les guides métal-métal THz démontrant qu'il est possible d'implémenter un cristal photonique par la seule structuration du métal du contact supérieur.
|
6 |
Etude théorique et expérimentale des résonances de galerie de microsphères de silice: pièges à photons pour des expériences d'électrodynamique en cavitéCollot, Laurent 29 November 1994 (has links) (PDF)
Ce travail de thèse porte sur l'étude des résonances de galerie de très haute surtension observées sur des microsphères de silice d'un diamètre voisin de 100μm. Ces résonances correspondent à des modes de propagation du champ le long d'un anneau équatonal dont les dimensions transversales sont de l'ordre de la longueur d'onde. Les pertes de ces modes guidés sont extrêmement faibles. Ils offrent donc une combinaison remarquable d'une très forte localisation du champ dans un tout petit volume et de très longs temps de vie pour les photons. Ces propriétés en font des résonateurs de choix tant pour de nombreuses applications pratiques que pour des expériences d'Électrodynamique Quantique en cavité. Le mémoire de thèse présente les propriétés de ces résonances, décrit leur observation expérimentale par spectroscopie laser et analyse quelques perspectives ouvertes par ces études en physique appliquée et fondamentale. Les possibilités d'utiliser ces modes de galerie pour asservir en phase un laser à diode ou pour fabriquer des lasers microscopiques sont envisagées. Une expérience de déflexion d'atomes froids dans l'onde évanescente associée à un mode de galerie est également étudiée. Une telle expérience devrait permettre de mettre en évidence la nature discrète de l'intensité d'un champ lumineux constitué de quelques photons et réaliser une mesure dispersive de tous petits champs optiques
|
7 |
Micro-dispositifs accordables pour la conversion de fréquences optiquesKusiaku, Koku 04 October 2012 (has links) (PDF)
L'absence de source continue monochromatique Térahertz (THz) appropriée constitue un handicap majeur pour le développement des applications associées à cette gamme de longueur d'ondes. En effet, les technologies électroniques et optiques actuelles ne permettent de couvrir qu'une part réduite du spectre électromagnétique THz (0,3-10 THz). Dans ce contexte, la conversion de fréquences optiques, et plus précisément le photo -mélange, est une voie prometteuse pour la génération de signal THz de haute pureté spectrale sur toute la fenêtre du spectre THz. Le photomélange consiste à pomper un dispositif optoélectronique ultrarapide par deux signaux lasers dont les fréquences sont séparées par quelques THz (0,3 à 5 THz). Dans ce travail, nous proposons un nouveau micro-résonateur photonique bifréquence à cavité verticale et monolithique pour la réalisation de source laser bifréquence pour le photomélange. Ce nouveau résonateur est basé sur le couplage de deux résonateurs photoniques, un cristal photonique membranaire résonant d'une part et une cavité Fabry Pérot verticale d'autre part, accordés spectralement, pour réaliser un composant bifréquence. Le couplage optique résultant de l'association de ces deux éléments permet la génération de deux modes hybrides dont la différence de fréquence peut être ajustée en fonction du taux de couplage et donc de la position du cristal photonique dans le micro-résonateur. Le présent travail de thèse porte sur la conception, la fabrication de ce nouveau dispositif bifréquence et son application à la réalisation d'une source laser bi-mode semiconductrice fonctionnant à 1.55dm.
|
8 |
Micro-dispositifs accordables pour la conversion de fréquences optiquesKusiaku, Koku 04 October 2012 (has links)
L'absence de source continue monochromatique Térahertz (THz) appropriée constitue un handicap majeur pour le développement des applications associées à cette gamme de longueur d’ondes. En effet, les technologies électroniques et optiques actuelles ne permettent de couvrir qu’une part réduite du spectre électromagnétique THz (0,3-10 THz). Dans ce contexte, la conversion de fréquences optiques, et plus précisément le photo –mélange, est une voie prometteuse pour la génération de signal THz de haute pureté spectrale sur toute la fenêtre du spectre THz. Le photomélange consiste à pomper un dispositif optoélectronique ultrarapide par deux signaux lasers dont les fréquences sont séparées par quelques THz (0,3 à 5 THz). Dans ce travail, nous proposons un nouveau micro-résonateur photonique bifréquence à cavité verticale et monolithique pour la réalisation de source laser bifréquence pour le photomélange. Ce nouveau résonateur est basé sur le couplage de deux résonateurs photoniques, un cristal photonique membranaire résonant d’une part et une cavité Fabry Pérot verticale d’autre part, accordés spectralement, pour réaliser un composant bifréquence. Le couplage optique résultant de l’association de ces deux éléments permet la génération de deux modes hybrides dont la différence de fréquence peut être ajustée en fonction du taux de couplage et donc de la position du cristal photonique dans le micro-résonateur. Le présent travail de thèse porte sur la conception, la fabrication de ce nouveau dispositif bifréquence et son application à la réalisation d’une source laser bi-mode semiconductrice fonctionnant à 1.55dm. / The lack of suitable monochromatic continuous-wave terahertz source consists of one the majors hurdles for terahertz spectrum applications development in various domains. Both electronic and optic technologies don’t allow covering all terahertz electromagnetic spectrum (0.3-10 THz). In this context and in order to generate high spectral purity wave over all THz spectrum window, a well-established technique consists in the photo-mixing procedure, where an ultrafast optoelectronic device is pumped by two laser signals whose frequencies are separated by an offset in the 0.3-5 THz window. In this work, we propose a novel dual-wavelength photonic micro resonator to provide a dual-mode monolithic semiconductor laser for THz generation by photo-mixing instead of the basic photo-mixing approach based on the use of two independent lasers. The novel photonic microresonator associates a vertical Fabry Perot (FP) cavity and photonic crystal membrane (PCM)resonators. A PCM exhibiting a resonant mode at normal incidence is inserted in a FP cavity with a resonant vertical mode at the same wavelength λ0. The resulting strong optical coupling leads to the generation of two mixed modes separated by a frequency difference which can be tuned through the loss rate of the PCM and its position inside the FP cavity. The work of this thesis focuses on the design, the micro-fabrication and the characterization of the dual-frequency resonator and its application to the realization of a single compact and flexible dual-mode semiconductor laser source around 1.55μm.
|
9 |
Exaltation multicorps du couplage lumière-matièreDelteil, Aymeric 20 December 2012 (has links) (PDF)
Ces travaux de thèse portent sur la conception, la réalisation et la caractérisation de dispositifs à base de puits quantiques semiconducteurs, fonctionnant dans les régimes de couplage fort et ultra-fort entre un mode de cavité et une excitation inter-sous-bande. Les états mixtes issus de ce couplage sont appelés polaritons inter-sous-bandes. Dans la première partie de la thèse, nous démontrons un dispositif électroluminescent dans lequel la branche polaritonique supérieure est peuplée à une énergie qui dépend de la tension appliquée au dispositif. De plus, nous mettons en évidence la relaxation des polaritons vers la branche inférieure par émission d'un phonon optique. Ce processus efficace permet d'atteindre un facteur d'occupation de la branche inférieure de l'ordre de 15%, et pourrait permettre d'obtenir de l'émission stimulée de polaritons. En augmentant la densité d'électrons dans le puits il est possible d'accéder au régime de couplage ultra-fort, caractérisé par une énergie de Rabi comparable avec celle de la transition inter-sous-bande. Pour cela la deuxième partie de la thèse est centrée sur l'étude de puits quantiques très dopés, avec plusieurs sous-bandes occupées. Plus particulièrement, nous réalisons une investigation théorique et expérimentale des interactions coulombiennes entre les plasmons inter-sous-bandes associés aux différentes transitions optiquement actives. Nous présentons un dispositif basé sur un puits quantique avec deux sous-bandes occupées, dans lequel une tension de grille contrôle la densité d'électrons dans le puits, ce qui modifie l'interaction entre les plasmons et donc la réponse optique. Pour des densités élevées, les forces d'oscillateur sont redistribuées en faveur de l'excitation de plus haute énergie. En vertu de ce phénomène, nous démontrons que la réponse optique d'un puits quantique ayant au moins trois sous-bandes occupées exhibe une unique résonance étroite, qui correspond à une excitation collective associant en phase toutes les transitions inter-sous-bandes. Cette excitation collective est observée en absorption et en électroluminescence. Lorsqu'on l'insère dans une microcavité, on atteint le régime de couplage ultra-fort avec une énergie de Rabi qui croît de façon monotone avec la densité d'électrons. Ce régime est démontré expérimentalement dans deux géométries de microcavité : planaire et zéro-dimensionnelle. Nos travaux montrent que l'interaction entre la lumière et la matière dans les puits quantiques dopés doit être pensée comme un processus purement collectif, régi par les phénomènes de cohérence induite par la charge.
|
Page generated in 0.0514 seconds